Micro-Organospheres Drug Screen to Lead Care (MODEL): a Precision Oncology Platform to Guide Breast Cancer Therapy
微有机球药物筛选引导护理 (MODEL):指导乳腺癌治疗的精准肿瘤学平台
基本信息
- 批准号:10383051
- 负责人:
- 金额:$ 39.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-09 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAutomationBiological AssayBiologyBiopsyBreast Cancer DetectionBreast Cancer PatientBreast Cancer therapyCancer DiagnosticsCancer PatientCaringCellsClinicClinicalClinical DataClinical Laboratory Improvement AmendmentsClinical ProtocolsClinical ResearchComplexDevelopmentDevicesDrug ScreeningERBB2 geneEmulsionsEnrollmentEquilibriumFaceFine needle aspiration biopsyFundingFutureGelGenerationsGenomicsGoalsInstitutional Review BoardsLeadMalignant NeoplasmsMedicineMethodsMicrofluidicsMinorityModelingNeedle biopsy procedureNeoadjuvant TherapyOncologistOncologyOrganoidsOutcomePatient RightsPatientsPerformancePharmaceutical PreparationsPhasePredispositionProblem SolvingProcessRefractoryRegimenRiskRoboticsRunningSample SizeSamplingTechnologyTemperatureTestingTherapeuticTimeTissuesValidationWorkarmbasecancer therapycancer typeclinical diagnosticsclinical predictorscommercializationcostdata integrationdata integritydesigndiagnostic assaydrug testingexperiencefeasibility testingflexibilityimprovedindividual patientmalignant breast neoplasmmicrofluidic technologyminiaturizeneoplastic cellnovelnovel strategiespatient responsepatient screeningprecision oncologypredicting responsepredictive modelingprototyperesearch clinical testingresponsescale upscreeningstandard of caresuccesstreatment responsetumorvalidation studies
项目摘要
PROJECT SUMMARY/ABSTRACT
The goal of precision oncology is to match cancer patients with medicines based on the specific biology of their
tumor. Crucially, the current precision oncology paradigm – which is largely based on tumor genomic profiling –
doesn’t work for the majority of patients. Since every patient’s tumor is uniquely complex, a potential solution to
this “precision” problem involves creating a viable functional model of a patient’s individual tumor in order to
directly test its susceptibility to different drugs. The broad adoption of such patient-derived functional models into
the clinic thus far has been hindered by several limitations centered on scalability, time, and success rate.
Specifically, any assay for guiding therapy must be: i) amenable to the amount of material derived from needle
biopsies, ii) established with a high success rate, and iii) completed within 10-14 days to minimize unacceptable
treatment delays. To address these clinical limitations, we have developed the novel Micro-Organosphere Drug
Screen to Lead Care (MODEL) platform. MODEL is based on novel microfluidics technology that generates
Patient-Derived Micro-Organospheres (PDMO) from clinical samples (e.g., biopsies) and performs drug
screening within 10 days to guide therapy. The objective of our proposal is to further develop and validate our
MODEL technology in breast cancer, with a view to advancing it further towards becoming a standard of care
diagnostic assay. Phase I of our proposal will focus on preparing our MODEL device for rigorous clinical
evaluation. In Aim 1 we will make key upgrades to our device prototype to improve sample efficiency, device
performance, and operability. Specifically, the goal of these improvements will be to reduce sample size
requirements (extending our capabilities down to fine-needle aspirates), enhance device performance, reinforce
consistency of key parameters during and between runs, and increase process automation. In Aim 2, we will
rigorously test the ability of our second-generation device to i) successfully generate PDMO from breast cancer
biopsies and ii) perform drug screens in less than 10 days total. In Phase II, we will make key device upgrades
to prepare the MODEL platform for commercialization, focusing on improving features related to data integrity
and ease-of-use (Aim 1). In Aim 2 we will perform the first validation of our MODEL platform in a HER2+ breast
cancer clinical protocol consisting of 50 patients, with the goal of testing MODEL’s ability to predict response to
standard of care neoadjuvant therapy. If successful, the development of our platform will revolutionize
precision oncology by arming oncologists with the information needed to optimally match cancer patients with
medicines.
项目摘要/摘要
精确肿瘤学的目的是根据其特定的生物学与癌症患者相匹配
瘤。至关重要的是,当前的精度肿瘤学范式主要基于肿瘤基因组分析 -
它不适用于大多数患者。由于每个患者的肿瘤都很复杂,因此
这个“精度”问题涉及创建患者个体肿瘤的可行功能模型,以便
直接测试其对不同药物的敏感性。这种患者衍生的功能模型广泛采用
到目前为止,该诊所受到以可伸缩性,时间和成功率为中心的几个局限性。
具体而言,任何指导疗法的测定必须是:i)适合于针线的材料量
活检,ii)以高成功率建立,iii)在10-14天内完成,以最大程度地减少无法接受的
治疗延迟。为了解决这些临床局限性,我们已经开发了新型的微孔药物
屏幕到Lead Care(模型)平台。模型基于生成的新型微流体技术
来自临床样本(例如活检)的患者衍生的微孔圈(PDMO)并进行药物
在10天内进行筛查以指导治疗。我们建议的目的是进一步发展和验证我们的
乳腺癌中的模型技术,以进一步发展成为一种护理标准
诊断测定。我们的提案的第一阶段将重点用于准备严格临床的模型设备
评估。在AIM 1中,我们将对设备原型进行关键升级,以提高样品效率,设备
绩效和操作。具体而言,这些改进的目标是减少样本量
要求(将我们的功能降低到罚款质量),增强设备性能,增强
运行期间和之间的关键参数的一致性,并增加过程自动化。在AIM 2中,我们将
严格测试我们的第二代设备的能力i)成功地从乳腺癌产生PDMO
活检和II)在不到10天的时间内进行药物筛查。在第二阶段,我们将进行关键设备升级
为了准备商业化的模型平台,专注于改善与数据完整性相关的功能
和易用性(AIM 1)。在AIM 2中,我们将在HER2+乳房中执行模型平台的第一个验证
癌症临床方案由50名患者组成,目的是测试模型预测对反应的能力
护理标准新辅助治疗。如果成功,我们平台的开发将彻底改变
精确肿瘤学家通过武装肿瘤学家提供最佳匹配癌症患者所需的信息
药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Delubac其他文献
Daniel Delubac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Delubac', 18)}}的其他基金
Micro-Organospheres Drug Screen to Lead Care (MODEL): a Precision Oncology Platform to Guide Breast Cancer Therapy
微有机球药物筛选引导护理 (MODEL):指导乳腺癌治疗的精准肿瘤学平台
- 批准号:
10836600 - 财政年份:2022
- 资助金额:
$ 39.85万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 39.85万 - 项目类别:
Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
- 批准号:
10819933 - 财政年份:2023
- 资助金额:
$ 39.85万 - 项目类别:
Open-source Software Development Supplement for 3D quantitative analysisof mouse models of structural birth defects through computational anatomy
通过计算解剖学对结构性出生缺陷小鼠模型进行 3D 定量分析的开源软件开发补充
- 批准号:
10839199 - 财政年份:2023
- 资助金额:
$ 39.85万 - 项目类别:
Expanding early cancer detection with high throughput OCEANA - Ovarian Cancer Exosome Analysis with Nanoplasmonic Array
利用高通量 OCEANA 扩大早期癌症检测 - 使用纳米等离子体阵列进行卵巢癌外泌体分析
- 批准号:
10762488 - 财政年份:2023
- 资助金额:
$ 39.85万 - 项目类别:
High-throughput Single Cell Co-assay of Histone Modifications andTranscriptome
组蛋白修饰和转录组的高通量单细胞联合分析
- 批准号:
10698374 - 财政年份:2023
- 资助金额:
$ 39.85万 - 项目类别: