Defining the Translational Machinery Controlling Hypoxic Sensitivity
定义控制缺氧敏感性的转化机制
基本信息
- 批准号:10471344
- 负责人:
- 金额:$ 38.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimalsBehaviorBiogenesisCaenorhabditis elegansCell HypoxiaCell physiologyCellsComplexConsumptionEnvironmentGenesGeneticGenetic ScreeningGenetic TranslationHibernationHigh temperature of physical objectHypoxiaInjuryMeasuresMetabolicMetabolismModelingMutationNematodaNeuronsOutputOxygenOxygen ConsumptionPathway interactionsPhenotypePhysiologicalPhysiologyProcessProtein BiosynthesisProteinsProteomeReagentRecoveryResearchResistanceRibosomesRoleStressStrokeSuppressor MutationsTheoretical modelTranslatingTranslationsWorkcancer cellcausal variantknock-downmutantmutation screeningneuron losspreservationresistance mechanismtooltranslation factorvirtual
项目摘要
Animal cells need oxygen for survival; without it virtually all animal cells eventually die. Neurons are particularly
sensitive to hypoxic injury as evidenced by the devastation in stroke. However, a variety of animals and cells
are relatively hypoxia resistant, but the mechanisms whereby they survive hypoxia are poorly understood.
Certain animals hibernate in severe hypoxic environments yet exit from hibernation with normal behavior and
physiology and no evidence of neuronal death. Strong suppression of protein translation is found in these
hibernating animals and is important to their hypoxia resistance. Cancer cells are often relatively hypoxia
resistant and have dysregulated translation machinery. The prevailing model to synthesize these observations
is that translation lowers energy consumption and thereby increases hypoxic survival. Protein translation
accounts for a large fraction of energy consumption, and cells respond to hypoxia by suppressing translation.
However, hypoxia-induced translational suppression is not uniform, and some hypoxia-protective proteins are
preferentially translated under hypoxic conditions. Thus, the prevailing “energetics” model is certainly overly
simplistic and perhaps entirely incorrect. Our lab has performed screens in the nematode C. elegans for genes
controlling hypoxic survival. Many of these genes encode translation factors. Consistent with energetics
models, these hypoxia protective mutations/RNAis reduce overall protein synthesis and oxygen consumption.
However, the degree of reduction in translation rate and oxygen consumption does not correlate with the level
of hypoxia resistance. Further, we showed that knockdown of one translation factor, rars-1, is protective when
initiated during recovery from hypoxia when energy preservation should no longer be important. These
observations suggest that translational suppression protects from hypoxia by complex mechanisms, not simply
lowering energy consumption. We propose using the powerful genetic tools in C. elegans to understand the
complex mechanism whereby the translation machinery controls hypoxic survival. We hypothesize that the
physiological consequences of reducing mRNA translation vary depending on how this reduction is achieved.
We will identify productive pathways that can produce resistance to hypoxia and study the mechanisms
whereby they determine hypoxic survival through the following specific aims. Aim1: Define pathways
whereby translation machinery regulates hypoxic injury. We will identify mutations in translation
machinery genes that produce hypoxia resistance and will also identify mutations in genes that block the
hypoxia resistance in these translation mutants. These genes will be placed in pathways and the effect of their
mutations on translation will be determined. Aim 2: Determine the metabolic and physiological
consequences of translation machinery modulation associated with hypoxia resistance. Through these
aims we will develop a more complete understanding of how the translation machinery controls hypoxic
survival and the consequences of the modulation of this machinery.
动物细胞需要氧气才能生存;如果没有氧气,几乎所有的神经元最终都会死亡。
然而,多种动物和细胞对缺氧损伤很敏感。
相对耐缺氧,但它们在缺氧中存活的机制尚不清楚。
某些动物在严重缺氧的环境中冬眠,但以正常的行为和状态退出冬眠。
生理学上并没有发现神经元死亡的证据。
冬眠动物的耐缺氧能力很重要,癌细胞往往处于相对缺氧的状态。
综合这些观察结果的普遍模型。
是翻译降低能量和消耗增加,从而蛋白质翻译缺氧。
占能量消耗的很大一部分,细胞通过抑制翻译来应对缺氧。
然而,缺氧诱导的翻译抑制并不统一,一些缺氧保护蛋白
优先在缺氧条件下翻译因此,流行的“能量学”模型肯定是过度的。
我们的实验室已经对线虫秀丽隐杆线虫进行了基因筛选,这可能是完全错误的。
许多这些基因编码翻译因子,与能量学一致。
在模型中,这些缺氧保护性突变/RNA 减少了总体蛋白质合成和耗氧量。
然而,转化率和耗氧量的降低程度与水平无关。
此外,我们还发现,敲除一种翻译因子 rars-1 在以下情况下具有保护作用。
当能量保存不再重要时,在从缺氧中恢复期间开始。
观察结果表明,翻译抑制通过复杂的机制来防止缺氧,而不仅仅是简单地
我们建议使用线虫中强大的遗传工具来了解
翻译机制控制缺氧生存的复杂机制。
减少 mRNA 翻译的生理后果取决于如何实现这种减少。
我们将确定可以产生耐缺氧能力的生产途径并研究其机制
他们通过以下具体目标确定缺氧生存: 定义途径。
因此翻译机制调节缺氧损伤我们将识别翻译中的突变。
产生耐缺氧性的机械基因,还将识别阻止缺氧的基因突变
这些翻译突变体的耐缺氧性将被放置在途径中以及它们的作用。
目标 2:确定代谢和生理学突变。
翻译机制调节与耐缺氧相关的后果。
目标是我们将对翻译机器如何控制缺氧有更全面的了解
生存以及该机制调节的后果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C. Michael Crowder其他文献
C. Michael Crowder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C. Michael Crowder', 18)}}的其他基金
DEFINING RAPTOR-MEDIATED MECHANISMS OF HYPOXIC INJURY
定义猛禽介导的缺氧损伤机制
- 批准号:
10732078 - 财政年份:2023
- 资助金额:
$ 38.61万 - 项目类别:
Defining the Translational Machinery Controlling Hypoxic Sensitivity
定义控制缺氧敏感性的转化机制
- 批准号:
10246395 - 财政年份:2018
- 资助金额:
$ 38.61万 - 项目类别:
Defining the Translational Machinery Controlling Hypoxic Sensitivity
定义控制缺氧敏感性的转化机制
- 批准号:
10002322 - 财政年份:2018
- 资助金额:
$ 38.61万 - 项目类别:
Mitochondrial Protein Misfolding and Aggregation after Hypoxia: Mechanisms and Mitigation
缺氧后线粒体蛋白错误折叠和聚集:机制和缓解
- 批准号:
10218275 - 财政年份:2017
- 资助金额:
$ 38.61万 - 项目类别:
Mitochondrial Protein Misfolding and Aggregation after Hypoxia: Mechanisms and Mitigation
缺氧后线粒体蛋白错误折叠和聚集:机制和缓解
- 批准号:
9401407 - 财政年份:2017
- 资助金额:
$ 38.61万 - 项目类别:
A C. ELEGANS MODEL FOR NMNAT1-MEDIATED HYPOXIC PROTECTION AND LIFESPAN EXTENSION
NMNAT1 介导的缺氧保护和寿命延长的线虫模型
- 批准号:
8573890 - 财政年份:2013
- 资助金额:
$ 38.61万 - 项目类别:
A C. ELEGANS MODEL FOR NMNAT1-MEDIATED HYPOXIC PROTECTION AND LIFESPAN EXTENSION
NMNAT1 介导的缺氧保护和寿命延长的线虫模型
- 批准号:
8837115 - 财政年份:2013
- 资助金额:
$ 38.61万 - 项目类别:
GENETIC ANALYSIS OF HYPOXIC CELL DEATH IN C. ELEGANS
线虫缺氧细胞死亡的遗传分析
- 批准号:
8906950 - 财政年份:2003
- 资助金额:
$ 38.61万 - 项目类别:
GENETIC ANALYSIS OF HYPOXIC CELL DEATH IN C. ELEGANS
线虫缺氧细胞死亡的遗传分析
- 批准号:
8714068 - 财政年份:2003
- 资助金额:
$ 38.61万 - 项目类别:
相似国自然基金
底栖动物摄食对沉积物中砷地球化学行为的影响-“As-Fe-S”角度下的作用机理
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
早期触觉经验剥夺对成年后动物行为的影响
- 批准号:31970940
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
社会性蜘蛛胫毛穹蛛(Stegodyphus tibialis)个性对合作行为适应性的影响
- 批准号:31901084
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
雌激素调节成年雄性斑胸草雀前脑核团电生理活动和突触可塑性对鸣唱行为的影响研究
- 批准号:31860605
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
动物“个性”对青海沙蜥动态视觉信号表达的影响
- 批准号:31801980
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
- 批准号:
10556475 - 财政年份:2023
- 资助金额:
$ 38.61万 - 项目类别:
The Role of Astrocyte Elevated Gene-1 (AEG-1), A Novel Multifunctional Protein, In Chemotherapy-Induced Peripheral Neuropathy
星形胶质细胞升高基因 1 (AEG-1)(一种新型多功能蛋白)在化疗引起的周围神经病变中的作用
- 批准号:
10679708 - 财政年份:2023
- 资助金额:
$ 38.61万 - 项目类别:
Deciphering the role of VTA dopaminergic signaling in memory consolidation during sleep
解读 VTA 多巴胺能信号在睡眠期间记忆巩固中的作用
- 批准号:
10677962 - 财政年份:2023
- 资助金额:
$ 38.61万 - 项目类别: