Leveraging genetic variation to dissect gene regulatory networks of reprogramming to pluripotency
利用遗传变异剖析重编程为多能性的基因调控网络
基本信息
- 批准号:10473738
- 负责人:
- 金额:$ 135.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAffectAllelesArchitectureBindingBiologicalBiological AssayCRISPR interferenceCandidate Disease GeneCell Differentiation processCell LineCell NucleusCellsCellular MorphologyChIP-seqChromatinClustered Regularly Interspaced Short Palindromic RepeatsComputer ModelsConsensusCytosineDNA MethylationDataData SetDisease modelDrug ScreeningDue ProcessEnhancersEventFibroblastsGene ExpressionGene Expression RegulationGenesGeneticGenetic EngineeringGenetic TranscriptionGenetic VariationGenomeGenomicsGoalsHeterogeneityHumanHuman GeneticsHuman GenomeIn SituIndividualJointsKnowledgeMaintenanceMapsMeasurementMediatingMethodsMethylationModelingMolecularMolecular ConformationMouse StrainsMultiomic DataNaturePatientsPhenotypePopulationPopulation GeneticsProcessQuantitative Trait LociRNARNA methylationRegenerative MedicineRegulationRegulator GenesRegulatory ElementResolutionResourcesRoleSeriesSiteSomatic CellSpecificityStatistical MethodsSystemTestingTherapeuticTimeUntranslated RNAVariantWorkbasec-myc Genescausal variantcell typeembryonic stem cellepigenomeepigenomicsexperimental studygene interactiongene regulatory networkgenetic variantgenome sequencinggenomic datahistone modificationinduced pluripotent stem cellinnovationinsightmolecular phenotypemultiple omicsnovelpluripotencypredictive modelingprogramsrepairedsingle-cell RNA sequencingstem cellstranscription factortranscriptional reprogrammingtranscriptometranscriptomicswhole genome
项目摘要
PROJECT SUMMARY
The reprogramming of somatic human cells to induced pluripotent stem cells (iPSCs) by only four transcription
factors (TFs) Oct4, Sox2, Klf4, and cMyc (OSKM) is one of the most striking remodelings of gene regulatory
networks. The remarkable ability of OSKM to reprogram diverse somatic cell types into iPSCs that are
functionally indistinguishable from embryonic stem cells indicates that OSKM leverages a fundamental
mechanism for network remodeling that may be generally applicable to all cell fate transitions. Previous studies
of reprogramming have identified the crucial role of cooperative TF binding in repressing somatic programs and
activating pluripotent ones. However, associating TF binding dynamics and epigenomic remodeling with key
bifurcation events during reprogramming is confounded by the highly heterogeneous nature of the
reprogramming process and the lack of knowledge regarding how the transition from somatic to pluripotent
regulatory programs occurs in individual cells. In this project, we aim to model the regulatory network underlying
the cell fate change of reprogramming using three types of single-cell multi-omic profiles generated from critical
time points during reprogramming. We will interrogate the network leveraging natural perturbation of
reprogramming and pluripotency by genetic variants. Genetic variation is well known to modulate the regulatory
network of pluripotency and contributes to the variability of cellular phenotypes and differentiation capacity of
iPSC lines. We will generate population-scale single-cell joint profiling of RNA and DNA methylation (snmCT-
seq), joint profiling of RNA and chromatin accessibility (scRNA + ATAC-seq) and single-nucleus joint profiling of
chromatin conformation and DNA methylation (sn-m3C-seq), allowing the cell-type-specific determination of
transcriptome, chromatin accessibility and methylation states at regulatory elements, as well as enhancer-gene
looping to connect non-coding variants to their regulatory target. To integrate OSKM binding with the single-cell
transcriptomic and epigenomic dynamics, we will determine the allele-specific binding of TFs and histone
modifications using a pooled-alleles ChIP-seq strategy. We will use Dynamic Regulatory Events Miner (DREM)
to construct predictive models by integrating transcription factor-gene interaction information with time- and
pseudotime-series genomics data. To determine the genetic regulation of the reprogramming network, we will
apply the novel statistical method FastGxE to distinguish cell-type-specific from the shared genetic component
of gene expression regulation, to enhance the sensitivity for identifying cell-type-specific quantitative trait loci
(QTLs). To test the regulatory network, we will experimentally determine the function of network hub genes and
non-coding variants using high-throughput CRISPR interference and precise variant replacement experiments.
Our proposed project integrates diverse approaches including single-cell multi-omics, computational modeling,
and genetic engineering, and will likely provide new insights into the mechanism by which TFs remodel regulatory
networks of cell type identity and serve as a model for similar analyses in other systems.
项目摘要
仅通过四个转录将体细胞重编程为诱导多能干细胞(IPSC)的重新编程
因素(TFS)OCT4,SOX2,KLF4和CMYC(OSKM)是基因调节的最引人注目的重塑之一
网络。 OSKM能够将各种体细胞类型重新编程为IPSC的显着能力
在功能上与胚胎干细胞无法区分,表明OSKM利用了基本
网络重塑的机制通常适用于所有细胞命运过渡。先前的研究
重编程已经确定了合作TF结合在压制躯体程序和
激活多能。但是,将TF结合动力学和表观基因组重塑与键关联
重新编程期间的分叉事件与高度异质性质混淆
重新编程过程以及缺乏有关如何从躯体到多能的过渡的知识
调节程序发生在单个细胞中。在这个项目中,我们旨在对基础监管网络进行建模
细胞命运使用从关键产生的三种类型的单细胞多摩变轮廓进行重新编程的变化
重新编程期间的时间点。我们将询问利用自然扰动的网络
通过遗传变异的重新编程和多能性。众所周知,遗传变异可以调节调节
多能性网络,并有助于细胞表型的变异性和分化能力
IPSC线。我们将产生RNA和DNA甲基化的种群尺度单细胞关节分析(SNMCT-
SEQ),RNA和染色质可及性(SCRNA + ATAC-SEQ)的关节分析和单核关节分析
染色质构象和DNA甲基化(SN-M3C-Seq),允许细胞类型的特异性测定
调节元素处的转录组,染色质可及性和甲基化状态以及增强子基因
循环以将非编码变体连接到其调节目标。将OSKM结合与单细胞结合
转录组和表观基因组动力学,我们将确定TFS和组蛋白的等位基因特异性结合
使用合并的芯片序列策略进行修改。我们将使用动态调节活动矿工(DREM)
通过将转录因子 - 基因相互作用信息与时间和时间和时间和时间和时间整合在一起来构建预测模型
伪系列基因组学数据。为了确定重编程网络的遗传调节,我们将
应用新颖的统计方法FastGXE将细胞类型特异性与共享遗传成分区分开
基因表达调控的,以增强识别细胞类型特异性定量特征基因座的灵敏度
(QTL)。为了测试监管网络,我们将通过实验确定网络中心基因的功能和
使用高通量CRISPR干扰和精确变体替换实验的非编码变体。
我们提议的项目整合了各种方法
和基因工程,并可能会提供有关TFS重塑调节的机制的新见解
细胞类型身份的网络,并作为其他系统中类似分析的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chongyuan Luo其他文献
Chongyuan Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chongyuan Luo', 18)}}的其他基金
Spatiotemporal epigenomic and chromosomal architectural cell atlas of developing human brains
人类大脑发育的时空表观基因组和染色体结构细胞图谱
- 批准号:
10689124 - 财政年份:2022
- 资助金额:
$ 135.13万 - 项目类别:
Spatiotemporal epigenomic and chromosomal architectural cell atlas of developing human brains
人类大脑发育的时空表观基因组和染色体结构细胞图谱
- 批准号:
10523974 - 财政年份:2022
- 资助金额:
$ 135.13万 - 项目类别:
In situ Single-Cell Multi-Omic and Morphological Profiling in Mammalian Brains
哺乳动物大脑的原位单细胞多组学和形态学分析
- 批准号:
10506297 - 财政年份:2022
- 资助金额:
$ 135.13万 - 项目类别:
SINGLE-CELL MULTI-OMIC APPROACHES TO MECHANISTICALLY CHARACTERIZE PSYCHIATRIC DISORDER RISK LOCI IN THE HUMAN BRAIN
单细胞多组学方法对人脑中精神疾病风险位点进行机械表征
- 批准号:
10582712 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
SINGLE-CELL MULTI-OMIC APPROACHES TO MECHANISTICALLY CHARACTERIZE PSYCHIATRIC DISORDER RISK LOCI IN THE HUMAN BRAIN
单细胞多组学方法对人脑中精神疾病风险位点进行机械表征
- 批准号:
10407453 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
SINGLE-CELL MULTI-OMIC APPROACHES TO MECHANISTICALLY CHARACTERIZE PSYCHIATRIC DISORDER RISK LOCI IN THE HUMAN BRAIN
单细胞多组学方法对人脑中精神疾病风险位点进行机械表征
- 批准号:
10116997 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
Leveraging genetic variation to dissect gene regulatory networks of reprogramming to pluripotency
利用遗传变异剖析重编程为多能性的基因调控网络
- 批准号:
10659175 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
Leveraging genetic variation to dissect gene regulatory networks of reprogramming to pluripotency
利用遗传变异剖析重编程为多能性的基因调控网络
- 批准号:
10297764 - 财政年份:2021
- 资助金额:
$ 135.13万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:82200258
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:82171845
- 批准年份:2021
- 资助金额:54.00 万元
- 项目类别:面上项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
In vivo precision genome editing to correct genetic disease
体内精准基因组编辑以纠正遗传疾病
- 批准号:
10771419 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别:
Impact of SARS-CoV-2 infection on respiratory viral immune responses in children with and without asthma
SARS-CoV-2 感染对患有和不患有哮喘的儿童呼吸道病毒免疫反应的影响
- 批准号:
10568344 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别:
A novel role for Wasl signaling in the regulation of skeletal patterning
Wasl 信号在骨骼模式调节中的新作用
- 批准号:
10718448 - 财政年份:2023
- 资助金额:
$ 135.13万 - 项目类别: