Relating spontaneous activity to electrical stimulation properties of primate retinal ganglion cells

将自发活动与灵长类视网膜神经节细胞的电刺激特性相关

基本信息

  • 批准号:
    10456725
  • 负责人:
  • 金额:
    $ 4.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-30
  • 项目状态:
    已结题

项目摘要

Project Summary / Abstract The most promising treatment option for photoreceptor degeneration, which is the leading cause of blindness in the United States, are retinal prostheses that are surgically implanted on the anterior retina in order to gain electrical access to the retinal ganglion cells (RGCs), bypassing the damaged photoreceptor cell layer. Despite there being a few FDA approved epiretinal prostheses on the market, the high density of RGCs at the surface of the retina makes it difficult to deliver current from electrodes with enough precision to recapitulate the natural patterns of ganglion cell activity, and thus useful visual perception for blind patients. This is due to coarse electrical stimulation that evokes unwanted activity in cells and axons at the epiretinal surface, especially in the central retina where cells are the densest. The goal of this research is to use information from the natural RGC activity recorded on the multi-electrode array in order to guide precise, spatially targeted electrical stimulation. Careful application of the properties of electric fields propagating in tissue to calibrate stimulation currents will allow epiretinal implants to produce meaningful visual perception in blind patients. The relationship between the recorded signature of a given RGC’s activity on the array—its ​Electrical Image (EI)—and its sensitivity to single or multi-electrode stimulation—its ​Electrical Receptive Field (ERF)—will be determined. First, experiments will be conducted in peripheral primate retina to collect data on RGC activation characteristics in response to delivering current from each of the ~500 electrodes on the array. Next, we will extend this model to experimental data collected on the smaller, densely-packed RGCs in the central Raphe region of the retina. Despite dense electrode spacing, arrays are limited in their ability to deliver precisely targeted stimulation by the distance between electrodes. This can be addressed by weakly stimulating with multiple neighboring electrodes at the time same, pushing the strength of stimulation current at the intersection of the multiple generated electric fields over the threshold required for target RGC activation. We will stimulate with combinations of two to seven neighboring hexagonally arranged electrodes to collect RGC ERFs in the peripheral and central retina. An cascading linear-nonlinear model, popular for modeling neuronal spiking, will be fit with EIs as input to predict ERFs across the array. A thorough understanding of the EI-ERF relation in the retina will enable the closed-loop, precise, spatially localized stimulation necessary for designing a high-fidelity epiretinal device, and uncover general principles applicable elsewhere in the central nervous system.
项目摘要 /摘要 光感受器变性的最有前途的治疗选择,这是失明的主要原因 在美国,是视网膜的视网膜假体,这些假体植入了前视网膜上 对视网膜神经节细胞(RGC)的电气通道,绕过受损的光感受器层。 在市场上,是FDA批准的首脑假体,表面RGC的高密度 视网膜的偶数使从电极传递电流以足够精确地将电流传递到自然 神经节细胞活性的模式,因此对盲患者有用的视觉感知。 电刺激唤起细胞和轴突中不必要的活性 中央视网膜白细胞是最密集的。 为了指导精确的,空间靶向的电刺激,记录在多电极阵列上的活性。 仔细应用在组织中传播的电场的性质到当前校准刺激 允许盲人植入物在盲人中产生视觉感知。 给定RGC在阵列上的活动的记录签名之间的关系 (EI) - 及其对单电极刺激或多电极刺激的敏感性 - 其电气接收场(ERF)将是 确定。 响应从阵列上的约500个电极中传递电流的特征 将此L扩展到在中央raphe中较小,密集的RGC上收集的实验数据 视网膜的区域。 电极之间的靶向刺激。 当时多个相邻的电极相同,在交叉路口推动刺激强度 在目标RGC激活所需的多个产生的电场中 结合两到七个相邻的六角形排列的电极,以收集您的RGC ERF 外围和中心视网膜。 与EIS一起拟合,以预测整个数组的ERF。 视网膜将实现设计高保真性所需的闭环,精确的空间局部刺激 院头设备,并发现中央扇形神经系统中适用于其他适用的一般原则。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sasidhar Madugula其他文献

Sasidhar Madugula的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sasidhar Madugula', 18)}}的其他基金

Relating spontaneous activity to electrical stimulation properties of primate retinal ganglion cells
将自发活动与灵长类视网膜神经节细胞的电刺激特性相关
  • 批准号:
    10219267
  • 财政年份:
    2019
  • 资助金额:
    $ 4.04万
  • 项目类别:
Relating spontaneous activity to electrical stimulation properties of primate retinal ganglion cells
将自发活动与灵长类视网膜神经节细胞的电刺激特性相关
  • 批准号:
    10053233
  • 财政年份:
    2019
  • 资助金额:
    $ 4.04万
  • 项目类别:

相似海外基金

Development of a model of Gonococcal conjunctivitis for vaccine evaluations
开发用于疫苗评估的淋菌性结膜炎模型
  • 批准号:
    10740430
  • 财政年份:
    2023
  • 资助金额:
    $ 4.04万
  • 项目类别:
Programmed cell death and cytomegalovirus retinitis pathogenesis
程序性细胞死亡和巨细胞病毒性视网膜炎发病机制
  • 批准号:
    10655133
  • 财政年份:
    2023
  • 资助金额:
    $ 4.04万
  • 项目类别:
Resubmission: Latent Class Trajectory Analysis in the OHTS Study
重新提交:OHTS 研究中的潜在类别轨迹分析
  • 批准号:
    10675764
  • 财政年份:
    2022
  • 资助金额:
    $ 4.04万
  • 项目类别:
Resubmission: Latent Class Trajectory Analysis in the OHTS Study
重新提交:OHTS 研究中的潜在类别轨迹分析
  • 批准号:
    10540153
  • 财政年份:
    2022
  • 资助金额:
    $ 4.04万
  • 项目类别:
Evaluation of the effectiveness of Ajjmuurur Baamḷe DSMES in the RMI
Ajjmuurur Baamá¸e DSMES 在 RMI 中的有效性评估
  • 批准号:
    10364952
  • 财政年份:
    2022
  • 资助金额:
    $ 4.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了