Multiplexed In Vivo DNA Assembly

多重体内 DNA 组装

基本信息

  • 批准号:
    10368437
  • 负责人:
  • 金额:
    $ 107.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-10 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT High-throughput and low-cost synthesis of long DNA fragments could open up new frontiers in genomics and synthetic biology by facilitating the production of genes, genetic pathways, variant libraries, or entire synthetic genomes. Microarray printing technologies provide for high-throughput and low-cost synthesis of short oligonucleotides (currently up to 300 bases long), while new technologies, such as enzymatic synthesis, have the potential to synthesize longer sequences. Libraries of open reading frames or regulatory elements have also been constructed. However, assembly of the above or other DNA elements into longer fragments remains a challenge. Widely-used in vitro DNA assembly methods, such as Gibson assembly and polymerase chain assembly, require considerable hands-on time, are difficult to multiplex and scale, and have size constraints on the length of the assembled product. In addition, accurate long assemblies from de novo synthesized DNA are difficult to achieve without a high-throughput error correction step. To overcome these hurdles, we have developed a novel, multiplexed method to parse, sequence verify, and stitch together DNA of various sizes in vivo. Using this method, complex pools of array-synthesized oligonucleotides or other DNA elements can be turned into positionally-ordered cellular arrays, with each position containing a sequence-verified input DNA. Input DNA in these arrays can then be stitched together recursively by bacterial mating. A key feature of our technology is early error detection, whereby individual DNA inputs are sequence-verified prior to stitching. That is, errors that occur during short DNA synthesis are detected and removed, rather than propagated into longer assemblies. At maximal throughput, we estimate that our technology has the potential to produce thousands of DNA assemblies in parallel at a cost that is at least an order of magnitude cheaper than commercially available gene synthesis technologies. Because DNA stitching can occur within bacterial artificial chromosomes, in vivo DNA parsing and stitching can perform multiplexed assembly of DNA constructs exceeding 100kb, at least an order of magnitude longer than current in vitro assembly techniques. In vivo assembly uses a stepwise stitching process that can be branched, allowing the construction of a wide variety of variants at low incremental cost. Here, we propose to continue development of this technology i) by building many genes to learn the error modalities of the process, ii) by assembling a ~100kb product, and iii) by developing a multi-step assembly procedure to reduce assembly time and increase product accuracy. Together, this integrated set of aims will result in a new high-throughput DNA assembly platform capable of synthesizing long and complex DNA constructs and variant libraries at low cost.
项目摘要/摘要 长DNA片段的高通量和低成本合成可以通过促进基因,遗传途径,变体文库或整个合成基因组的产生来开辟基因组和合成生物学的新前沿。微阵列打印技术可提供短期和低成本合成的短寡核苷酸(目前长达300个碱基),而诸如酶促合成之类的新技术有可能合成更长的序列。还构建了开放阅读框架或监管元素的库。但是,将上述或其他DNA元素组装成较长的片段仍然是一个挑战。广泛使用的体外DNA组装方法,例如Gibson组装和聚合酶链组件,需要相当大的动手时间,很难多重和扩展,并且对组装产品的长度有尺寸约束。此外,如果没有高通量误差校正步骤,很难实现从头合成的DNA的准确长组件。为了克服这些障碍,我们开发了一种新型的多重方法来解析,序列验证和针迹一起体内各种大小的DNA。使用此方法,可以将阵列合成的寡核苷酸或其他DNA元素的复杂池变成位置有序的细胞阵列,每个位置都包含序列验证的输入DNA。然后,这些阵列中的输入DNA可以通过细菌交配递归地缝合在一起。我们技术的一个关键特征是早期错误检测,在缝合之前对单个DNA输入进行了序列验证。也就是说,在短DNA合成过程中发生的错误被检测到并去除,而不是传播到更长的组件中。在最大吞吐量下,我们估计我们的技术有可能同时生产数千个DNA组件,其成本至少比市售基因合成技术便宜的数量级至少便宜。由于DNA缝合可能发生在细菌人造染色体中,因此体内DNA解析和缝线可以执行超过100KB的DNA构建体的多路复用组装,至少比当前的体外组装技术长的数量级。体内组装使用一个可以分支的逐步缝合过程,可以以低增量成本构建各种变体。在这里,我们建议通过构建许多基因来学习流程的错误方式,ii)通过组装〜100KB产品以及III)来继续开发这项技术。共同的一组目标将导致一个新的高通量DNA组装平台,能够以低成本综合长而复杂的DNA构建体和变体库。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SASHA F LEVY其他文献

SASHA F LEVY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SASHA F LEVY', 18)}}的其他基金

Multiplexed In Vivo DNA Assembly
多重体内 DNA 组装
  • 批准号:
    10927631
  • 财政年份:
    2023
  • 资助金额:
    $ 107.51万
  • 项目类别:
Multiplexed In Vivo DNA Assembly
多重体内 DNA 组装
  • 批准号:
    10620139
  • 财政年份:
    2022
  • 资助金额:
    $ 107.51万
  • 项目类别:
High-throughput genetic interaction sequencing in mammalian cells
哺乳动物细胞中的高通量遗传相互作用测序
  • 批准号:
    9360136
  • 财政年份:
    2016
  • 资助金额:
    $ 107.51万
  • 项目类别:
PPiSeq: High-Throughput Protein-Protein Interaction Sequencing
PPiSeq:高通量蛋白质-蛋白质相互作用测序
  • 批准号:
    9145264
  • 财政年份:
    2015
  • 资助金额:
    $ 107.51万
  • 项目类别:
PPiSeq: High-Throughput Protein-Protein Interaction Sequencing
PPiSeq:高通量蛋白质-蛋白质相互作用测序
  • 批准号:
    10449402
  • 财政年份:
    2015
  • 资助金额:
    $ 107.51万
  • 项目类别:
PPiSeq: High-Throughput Protein-Protein Interaction Sequencing
PPiSeq:高通量蛋白质-蛋白质相互作用测序
  • 批准号:
    10294207
  • 财政年份:
    2015
  • 资助金额:
    $ 107.51万
  • 项目类别:
PPiSeq: High-Throughput Protein-Protein Interaction Sequencing
PPiSeq:高通量蛋白质-蛋白质相互作用测序
  • 批准号:
    9288060
  • 财政年份:
    2015
  • 资助金额:
    $ 107.51万
  • 项目类别:
PPiSeq: High-Throughput Protein-Protein Interaction Sequencing
PPiSeq:高通量蛋白质-蛋白质相互作用测序
  • 批准号:
    9307578
  • 财政年份:
    2015
  • 资助金额:
    $ 107.51万
  • 项目类别:
Identification of phenotypic capacitors of environmental and genotypic variation
环境和基因型变异的表型电容器的鉴定
  • 批准号:
    7220829
  • 财政年份:
    2007
  • 资助金额:
    $ 107.51万
  • 项目类别:
Identification of phenotypic capacitors of environmental and genotypic variation
环境和基因型变异的表型电容器的鉴定
  • 批准号:
    7347536
  • 财政年份:
    2007
  • 资助金额:
    $ 107.51万
  • 项目类别:

相似海外基金

Multiplexed In Vivo DNA Assembly
多重体内 DNA 组装
  • 批准号:
    10927631
  • 财政年份:
    2023
  • 资助金额:
    $ 107.51万
  • 项目类别:
Multiplexed In Vivo DNA Assembly
多重体内 DNA 组装
  • 批准号:
    10620139
  • 财政年份:
    2022
  • 资助金额:
    $ 107.51万
  • 项目类别:
Rapid discovery of thousands of intact biosynthetic gene pathways for bioactive natural product compounds from un-sequenced filamentous fungi using a novel FAC-NGS tool
使用新型 FAC-NGS 工具从未测序的丝状真菌中快速发现数千个完整的生物活性天然产物化合物的生物合成基因途径
  • 批准号:
    10053396
  • 财政年份:
    2019
  • 资助金额:
    $ 107.51万
  • 项目类别:
Rapid discovery of thousands of intact biosynthetic gene pathways for bioactive natural product compounds from un-sequenced filamentous fungi using a novel FAC-NGS tool
使用新型 FAC-NGS 工具从未测序的丝状真菌中快速发现数千个完整的生物活性天然产物化合物的生物合成基因途径
  • 批准号:
    10348139
  • 财政年份:
    2019
  • 资助金额:
    $ 107.51万
  • 项目类别:
Rapid discovery of thousands of intact biosynthetic gene pathways for bioactive natural product compounds from un-sequenced filamentous fungi using a novel FAC-NGS tool
使用新型 FAC-NGS 工具从未测序的丝状真菌中快速发现数千个完整的生物活性天然产物化合物的生物合成基因途径
  • 批准号:
    10092087
  • 财政年份:
    2019
  • 资助金额:
    $ 107.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了