Tumor Plasticity
肿瘤可塑性
基本信息
- 批准号:9538612
- 负责人:
- 金额:$ 114万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Antineoplastic AgentsApoptosisCell ProliferationCharacteristicsClinicCompetenceComplexCytoskeletonDiagnosisDiseaseDisease ProgressionDrug resistanceEconomicsEnvironmentExposure toGene ExpressionGeneticHeterogeneityHomeostasisHumanHypoxiaImmunotherapyInvestmentsMalignant - descriptorMalignant NeoplasmsMetabolismMitochondriaMolecularMorbidity - disease rateNeoplasm MetastasisNutrientOncogenesOrganellesPathway interactionsPatient-Focused OutcomesPatientsPharmaceutical PreparationsPopulationProcessProteinsRoleStressToxic effectTreatment FailureTumor BiologyTumor-Associated ProcessWorkXenograft procedurebasecancer typecell motilitycostdisease heterogeneitydrug discoveryfitnessgenetic makeupimprovedinnovationmolecular drug targetmortalitymouse modelneoplastic cellnovelpersonalized medicineresponsesocialtherapeutic targettraittumortumor heterogeneitytumor microenvironment
项目摘要
PROJECT SUMMARY
Despite half a century of social and economic investments, an unprecedented understanding of cancer genes
and their pathways, and an arsenal of new molecular and immunological therapies, a diagnosis of malignancy
still carries significant morbidity and mortality. Heralded as a breakthrough for cancer “cures”, the promise of
personalized medicine, where every patient receives the right drug for the right type of cancer based on
genetic makeup is yet to be realized. In fact, most molecularly-targeted drugs have been disappointing in the
clinic, producing only short-lived responses, often at staggering costs and financial hardship for the patients,
only to be supplanted by the emergence of drug-resistant and metastatic disease. We know that the
extraordinary heterogeneity of human tumors, with hundreds of malignant clones in constant competition and
cooperation with each other, is a major reason for treatment failure, but an in-depth understanding of this
process has remained surprisingly elusive. Work carried out by our group over the past ten years has focused
on mechanisms of tumor adaptation, or plasticity as novel, fundamental drivers of disease heterogeneity and
worse patient outcome. We found that stress conditions typical of the tumor microenvironment, whether
hypoxia, shortage of nutrients, protein toxicity or exposure to molecular therapy activate a coordinated set of
cellular responses, a network that sustains cell proliferation, promotes survival, reconfigures metabolism,
stimulates gene expression, and heightens cell motility and invasion. The net effect for the malignant
population is not only improved fitness to cope with an unfavorable microenvironment, but also the acquisition
of new traits characteristic of aggressive disease, including drug-resistance and metastatic competence.
Unexpectedly, we identified reprogramming of mitochondrial functions as an obligatory hub for this process,
enabling organelle-cytoskeleton dynamics, assembly of novel apoptosis-regulatory complex(es), and
retrograde gene expression. Therefore, the hypothesis that tumor plasticity imparts cellular diversity in
response to stress, propagates tumor heterogeneity and promotes the acquisition of aggressive disease traits
through mitochondrial reprogramming can be formulated, and will constitute the focus of the present
application. The proposed studies will dissect the cellular and molecular requirements of tumor plasticity as a
novel hallmark of cancer, credential its relevance in xenograft and genetic mouse models of localized and
metastatic disease, and exploit emerging vulnerabilities of these pathways for innovative cancer drug
discovery. The results will establish tumor plasticity as a novel driver of disease progression, reach a
comprehensive blueprint of the role of mitochondrial homeostasis in cancer, and validate new, actionable
therapeutic targets for patients with late-stage disease.
项目概要
尽管经过半个世纪的社会和经济投资,对癌症基因的了解却前所未有
及其途径,以及一系列新的分子和免疫疗法、恶性肿瘤的诊断
仍然具有显着的发病率和死亡率,被誉为癌症“治愈”的突破,这是癌症的希望。
个性化医疗,每个患者根据不同的癌症类型接受正确的药物治疗
事实上,大多数分子靶向药物的表现都令人失望。
诊所只能产生短暂的反应,通常会给患者带来惊人的成本和经济困难,
只会被耐药性和转移性疾病的出现所取代。
人类肿瘤具有非凡的异质性,数百种恶性克隆在不断竞争和
相互配合,是治疗失败的一个重要原因,但深入认识这一点
我们小组在过去十年中开展的工作仍然令人惊讶地难以捉摸。
肿瘤适应机制或可塑性作为疾病异质性的新的基本驱动因素
我们发现肿瘤微环境的典型应激条件,无论是
缺氧、营养缺乏、蛋白质毒性或接受分子治疗会激活一系列协调一致的反应
细胞反应,一个维持细胞增殖、促进生存、重新配置新陈代谢的网络,
刺激基因表达,增强细胞运动和侵袭,对恶性细胞产生净效应。
人口不仅提高了适应不利微环境的能力,而且还获得了
侵袭性疾病的新特征,包括耐药性和转移能力。
出乎意料的是,我们发现线粒体功能的重编程是这一过程的必要枢纽,
实现细胞器-细胞骨架动力学、新型凋亡调节复合物的组装,以及
因此,肿瘤可塑性赋予细胞多样性的假设。
对应激的反应,传播肿瘤异质性并促进侵袭性疾病特征的获得
通过线粒体重编程可以制定,并将构成当前的焦点
拟议的研究将剖析肿瘤可塑性的细胞和分子要求。
癌症的新标志,证明其在异种移植和局部和遗传小鼠模型中的相关性
转移性疾病,并利用这些途径的新弱点开发创新癌症药物
研究结果将确立肿瘤可塑性作为疾病进展的新驱动因素,并达到一个新的目标。
线粒体稳态在癌症中的作用的全面蓝图,并验证新的、可操作的
晚期疾病患者的治疗目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dario C Altieri其他文献
Dario C Altieri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dario C Altieri', 18)}}的其他基金
Augmenting T-cell immunotherapy outcomes in blood and solid tumor microenvironment in ART-suppressed HIV infection (immune/microenvironment)
在 ART 抑制的 HIV 感染中增强血液和实体瘤微环境中的 T 细胞免疫治疗效果(免疫/微环境)
- 批准号:
10620011 - 财政年份:2022
- 资助金额:
$ 114万 - 项目类别:
A First-in-Human Phase I Clinical Trial of Mitochondrial-Targeted Hsp90 Inhibitor, Gamitrinib
线粒体靶向 Hsp90 抑制剂 Gamitrinib 的首次人体 I 期临床试验
- 批准号:
10472429 - 财政年份:2021
- 资助金额:
$ 114万 - 项目类别:
A First-in-Human Phase I Clinical Trial of Mitochondrial-Targeted Hsp90 Inhibitor, Gamitrinib
线粒体靶向 Hsp90 抑制剂 Gamitrinib 的首次人体 I 期临床试验
- 批准号:
9668658 - 财政年份:2021
- 资助金额:
$ 114万 - 项目类别:
(PQC2) Plasticity Of The.PI3K Network In Early Dormancy
(PQC2) .PI3K 网络在休眠早期的可塑性
- 批准号:
8791730 - 财政年份:2014
- 资助金额:
$ 114万 - 项目类别:
相似国自然基金
LINC00671-HDAC3/HDAC7-FOXO6反馈环路调节胃癌细胞增殖与凋亡的机制研究
- 批准号:82302891
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
先天性巨痣形成新机制的探索:胚系DNA修复功能缺陷导致体细胞NRAS突变引起高增殖及BCL2上调引起低凋亡的机制研究
- 批准号:82372533
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
顺铂治疗后凋亡肿瘤细胞通过Caspase-3/R-spondin-3促进存活细胞干性和再增殖的机制研究
- 批准号:82303881
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
G蛋白偶联雌激素受体通过Hippo-YAP通路调控BPH上皮细胞增殖/凋亡的机制研究
- 批准号:82300871
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内皮细胞过度增殖介导组蛋白乳酸化修饰CASP8诱导细胞坏死性凋亡在扩张型心肌病中的机制研究
- 批准号:82360080
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanisms of Parp inhibitor-induced bone marrow toxicities
Parp 抑制剂诱导骨髓毒性的机制
- 批准号:
10637962 - 财政年份:2023
- 资助金额:
$ 114万 - 项目类别:
Project 1: Overcoming therapeutic resistance in pancreatic cancer through epigenetic reprogramming
项目1:通过表观遗传重编程克服胰腺癌的治疗耐药性
- 批准号:
10629063 - 财政年份:2023
- 资助金额:
$ 114万 - 项目类别:
Immunoepigenetic targeting of MHC regulators in FAP
FAP 中 MHC 调节因子的免疫表观遗传学靶向
- 批准号:
10677375 - 财政年份:2023
- 资助金额:
$ 114万 - 项目类别:
Combination of tumor targeted therapy with stroma modulating agent for PDAC
肿瘤靶向治疗与基质调节剂联合治疗 PDAC
- 批准号:
10629924 - 财政年份:2023
- 资助金额:
$ 114万 - 项目类别: