Pan-neuronal functional imaging and anesthesia
全神经元功能成像和麻醉
基本信息
- 批准号:9707361
- 负责人:
- 金额:$ 15.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Absence of pain sensationAmnesiaAnesthesia proceduresAnesthesiologyAnestheticsAnimalsArchitectureBehaviorBehavioral ParadigmBiological ModelsBrainBrain regionCaenorhabditis elegansCalciumClinicalComplexDataDefectElectroencephalographyFluorescenceFunctional ImagingFunctional Magnetic Resonance ImagingGangliaGeneral AnesthesiaGeneticGlareHumanImageIndividualKnowledgeLeadLongevityMapsMeasurementMeasuresMediatingMedicineMemoryMicroscopyModernizationModificationMolecularMolecular AnalysisMovementMusMuscle relaxation phaseNematodaNervous system structureNeuronsOpticsPainPatientsPerceptionPhysiologicalPhysiologyPopulationPostoperative PeriodPsyche structureResearchResolutionRiskSensorySignal TransductionSomatosensory CortexStimulusSystemTechniquesTechnologyTestingTimeTransgenic OrganismsTranslatingTranslationsUnconscious Statecalcium indicatorclinical practiceexperienceexperimental studyfluorescence imaginghippocampal pyramidal neuronin vivomouse modelneuronal circuitrynoveloptical imagingpromoterreceptorresponsetheoriestwo-photon
项目摘要
Abstract
Volatile anesthetics produce all stages of general anesthesia including unconsciousness, amnesia, analgesia
and muscle relaxation. Once placed into this physiological state, the experience, memory and physical
response to excruciating pain are all lost. However, we still do not understand mechanistically how this state of
anesthesia is produced within neuronal systems such that complex mental activity is ablated while vestigial
physiology is preserved. To date, research has proceeded along essentially two tracks: either the gross
measurement of neuronal activity in entire regions of the brain using fMRI and EEG (which are fundamentally
limited by resolution), or analysis at the molecular level looking for specific receptors for the volatile anesthetics
(which has largely foundered). Astonishingly, patients can nevertheless be promptly retrieved from this state,
and empirical clinical practice has reduced the risk of anesthesia to the extent that it is now an essential and
universally accepted part of the modern practice of medicine. Fortunately, using novel fluorescent microscopy,
we are now able to image neuronal activity in real-time, in vivo, and at resolutions capable of simultaneously
capturing the activity of individual neurons and entire populations of complex neuronal networks. In this study,
we apply this technique to C. elegans in which we are able to capture the activity of the entire nervous system,
and to the mouse in which we capture regions of the somatosensory cortex. To discern the effect by which
clinical anesthesia is achieved, it would make sense to begin with the creature with the simplest, most tractable
neuronal architecture in which anesthesia is known to be inducible. C. elegans offers a simple well-mapped
nervous system (302 neurons), well characterized behavioral paradigms and amenable genetics. Moreover C.
elegans is well established as a model system in anesthesiology, and displays distinct stages of gross
behavior under anesthesia similar to humans. Using GCaMP, a fluorescent indicator of intracellular calcium
concentration expressed transgenically under a neuronal promoter, we can capture the activity of multiple
neurons optically, non-invasively, and in parallel. Our experimental system will allow us to measure activity of
the individual neurons within large-scale neuronal circuits to understand how subtle modifications in discrete
neuronal dynamics lead to the gross but reversible functional defects at the level of the overall nervous system
that result in analgesia and physical quiescence. Our study will define the effects of volatile anesthetics over
increasing neuronal complexity from individual neurons to the entire nervous system. Current technology within
mammalian systems is limited in scale to small subsections of the brain. We will begin complementary
imaging experiments in the somatosensory cortex of the mouse that will initiate the translation of our findings
and techniques to mammalian systems.
抽象的
挥发性麻醉剂产生全身麻醉的各个阶段,包括意识不清、失忆、镇痛
和肌肉放松。一旦进入这种生理状态,经验、记忆和身体
对剧痛的反应全部丧失。然而,我们仍然不明白这种状态是如何产生的。
麻醉是在神经系统内产生的,因此复杂的心理活动被消除,而残留的
生理学得以保留。迄今为止,研究基本上沿着两条轨道进行:
使用功能磁共振成像 (fMRI) 和脑电图 (EEG) 测量大脑整个区域的神经元活动(这从根本上来说是
受分辨率限制),或在分子水平上进行分析,寻找挥发性麻醉剂的特定受体
(基本上已经失败了)。令人惊讶的是,患者仍然能够迅速从这种状态中恢复过来,
经验性的临床实践已经降低了麻醉的风险,以至于它现在已成为一种必要的和必要的治疗手段。
现代医学实践中被普遍接受的一部分。幸运的是,使用新型荧光显微镜,
我们现在能够以能够同时在体内的分辨率对神经元活动进行实时成像
捕获单个神经元和整个复杂神经元网络群的活动。在这项研究中,
我们将这种技术应用于秀丽隐杆线虫,我们能够捕获整个神经系统的活动,
以及我们捕获体感皮层区域的小鼠。来辨别其效果
实现临床麻醉后,从最简单、最容易处理的生物开始是有意义的
已知麻醉是可诱导的神经元结构。秀丽隐杆线虫提供了一个简单的、映射良好的
神经系统(302 个神经元)、特征明确的行为范式和顺从的遗传学。此外C.
elegans 已成为麻醉学领域的一个模型系统,并显示出不同的粗体阶段
麻醉下的行为与人类相似。使用细胞内钙荧光指示剂 GCaMP
在神经元启动子下转基因表达的浓度,我们可以捕获多个
神经元光学地、非侵入性地、并行地。我们的实验系统将使我们能够测量
大规模神经元回路中的单个神经元,以了解离散的细微变化
神经元动力学导致整个神经系统水平的严重但可逆的功能缺陷
从而导致镇痛和身体静止。我们的研究将定义挥发性麻醉剂对
增加从单个神经元到整个神经系统的神经元复杂性。目前的技术
哺乳动物系统的规模仅限于大脑的一小部分。我们将开始互补
小鼠体感皮层的成像实验将启动我们的发现的转化
和哺乳动物系统的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher W Connor其他文献
Christopher W Connor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher W Connor', 18)}}的其他基金
相似海外基金
Neuroimaging to identify the neural correlates of anesthetic and analgesic action in humans
神经影像学可识别人类麻醉和镇痛作用的神经相关性
- 批准号:
10795475 - 财政年份:2022
- 资助金额:
$ 15.19万 - 项目类别:
Voltage-gated calcium channels as target for anesthetics
电压门控钙通道作为麻醉靶点
- 批准号:
10402374 - 财政年份:2021
- 资助金额:
$ 15.19万 - 项目类别:
Anesthetics' Effects on Physiological Responses Modulated by Peripheral GABAA Receptors
麻醉药对外周 GABAA 受体调节的生理反应的影响
- 批准号:
10393015 - 财政年份:2021
- 资助金额:
$ 15.19万 - 项目类别: