Role of KLF15 in proximal tubule metabolism

KLF15 在近曲小管代谢中的作用

基本信息

  • 批准号:
    10481366
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Chronic kidney disease (CKD) is a leading risk factor for cardiovascular disease, with a disproportionate burden on U.S. Veterans. Recent data demonstrates that acute kidney injury (AKI), despite initial renal recovery, is a major risk factor for CKD. The proximal tubule (PT) is the primary target in AKI due to its high susceptibility to ischemia and DNA-damaging nephrotoxins such as chemotherapeutic agents. Damaged PT cells dedifferentiate, and initially undergo cell cycle arrest, predominantly at the G2/M checkpoint. This cell cycle arrest may allow repair of DNA damage caused by reactive oxygen species secondary to mitochondrial damage or directly by DNA-damaging toxins. Sustained cell cycle arrest is associated with a switch to secretion of pro-fibrotic signaling molecules, inducing resident fibroblasts to proliferate and differentiate to myofibroblasts, beginning the transition to a fibrotic injury. PT cells also undergo metabolic reprograming, with severe downregulation of fatty acid b-oxidation (FAO), and limited compensation by anerobic glycolysis. While restoring FAO either by overexpressing Ppara or by using a peroxisome proliferator activated receptor alpha (PPARa) agonist attenuates AKI and CKD in murine models, this has not translated to use in clinical AKI, suggesting additional factors are required to mitigate the progression from AKI to CKD. Krüppel-Like Factor 15 (KLF15) is a kidney-enriched transcription factor, involved in a diverse range of cellular processes, including cell differentiation and FAO. In the initial funding period of the VA Merit, we demonstrated the salutary role of KLF15 in glomerular disease leading to a composition-of-matter IP on KLF15 agonists by the Veterans Affairs. During this initial period, we also identified that KLF15 is highly expressed in differentiated PT cells, but is significantly reduced in murine models of PT injury. Utilizing a murine model of PT-specific injury secondary to DNA damage, we observed that PT-specific knockdown of Klf15 exacerbated AKI as well as CKD. PT-specific knockdown of Klf15 also increased pathways involving cell cycle arrest, oxidative stress, pro-fibrotic signaling and a decrease in pathways utilizing FA for the generation of acetyl-CoA, a central metabolic intermediate in macromolecule biosynthesis and energy production. We also observed an enrichment of genes critical for FA utilization with putative and proximal KLF15- and PPARa-binding sites, suggesting potential KLF15-PPARa co-operativity in the regulation of FA utilization. In addition, we demonstrated a significant increase in glycerolipid synthesis pathways and lipid droplet formation in the setting of suppressed FAO, suggesting a potential compensatory mechanism post-DNA damage. KLF15 expression was also associated with PPARA expression in human kidney biopsies with and without CKD. In addition, multivariate regression analysis demonstrated that a decrease in KLF15 expression was independently associated with eGFR decline, suggesting that the loss of KLF15 might be a key driver of PT injury. Based on these preliminary data and strong scientific rigor of prior research, we hypothesize that KLF15-PPARa co-operativity drives the utilization of excess free fatty acids for acetyl-CoA and glycerolipid synthesis to prevent maladaptive PT repair post-DNA damage. We propose to test this hypothesis by (1) determining the mechanism by which KLF15-PPARa co-operativity restores PT metabolism after PT injury secondary to DNA-damage and (2) to investigate the requisite role of KLF15-PPARa in PT injury secondary to DNA-damage. This proposal will address a current gap in the field by investigating the mechanisms mediating transcriptional regulation of FA utilization in the PT cells post-DNA damage. The long-term goal of our project is to demonstrate that the combination of KLF15 and PPARa agonists is a novel therapeutic strategy to mitigate PT injury post-DNA damage. Identification of novel targets for the treatment of AKI is of major interest to the VA, given the high burden of CKD among U.S. Veterans.
慢性肾脏病(CKD)是心血管疾病的主要危险因素, 最近的数据表明,尽管急性肾损伤(AKI)对美国退伍军人造成了不成比例的负担。 初始肾脏恢复是 CKD 的主要危险因素,近曲小管 (PT) 是 AKI 的主要目标。 它对缺血和 DNA 损伤性肾毒素(例如化疗药物)高度敏感。 受损的 PT 细胞去分化,最初经历细胞周期停滞,主要是在 G2/M 检查点。 这种细胞周期停滞可能允许修复由继发性活性氧物质引起的 DNA 损伤。 线粒体损伤或直接损伤 DNA 的毒素与持续的细胞周期停滞有关。 转而分泌促纤维化信号分子,诱导常驻成纤维细胞增殖并 分化为肌成纤维细胞,开始转变为纤维化损伤 PT 细胞也经历代谢。 重编程,脂肪酸 b 氧化 (FAO) 严重下调,并且通过 通过过表达 Ppara 或使用过氧化物酶体增殖剂来恢复FAO。 激活受体 α (PPARa) 激动剂可减轻小鼠模型中的 AKI 和 CKD,但这尚未转化为 在临床 AKI 中的使用,表明需要其他因素来减缓从 AKI 到 CKD 的进展。 Krüppel 样因子 15 (KLF15) 是一种富含肾脏的转录因子,参与多种 细胞过程,包括细胞分化和FAO 在 VA Merit 的初始资助期间,我们。 证明了 KLF15 在肾小球疾病中的有益作用,导致对 KLF15 进行物质成分 IP 在此初始阶段,我们还发现 KLF15 在退伍军人事务部的激动剂中高度表达。 分化的 PT 细胞,但在 PT 损伤的小鼠模型中显着减少。 DNA 损伤继发的 PT 特异性损伤,我们观察到 Klf15 的 PT 特异性敲低加剧了 AKI 以及 CKD 特异性敲低 Klf15 也增加了涉及细胞周期停滞的途径, 氧化应激、促纤维化信号传导以及利用 FA 生成乙酰辅酶 A 的途径减少, 我们还观察到了大分子生物合成和能量生产的中心代谢中间体。 通过假定的和近端的 KLF15 和 PPARa 结合位点富集对 FA 利用至关重要的基因, 表明 KLF15-PPARa 在 FA 利用调节中具有潜在的协同作用。 甘油脂合成途径和脂滴形成显着增加 抑制FAO,表明KLF15表达后存在潜在的补偿机制。 还与患有和不患有 CKD 的人肾活检中 PPARA 的表达相关。 多变量回归分析表明,KLF15 表达的降低与 与 eGFR 下降相关,表明 KLF15 的缺失可能是 PT 损伤的关键驱动因素。 基于这些初步数据和强有力的科学研究,我们致力于 KLF15-PPARa 协同作用驱动过量游离脂肪酸对乙酰辅酶 A 和甘油脂的利用 我们建议通过 (1) 来检验这一假设。 确定 KLF15-PPARa 协同作用在 PT 损伤后恢复 PT 代谢的机制 (2) 研究 KLF15-PPARa 在继发于 DNA 损伤的 PT 损伤中的必要作用 该提案将通过研究介导机制来解决该领域目前的空白。 DNA 损伤后 PT 细胞中 FA 利用的转录调控 我们项目的长期目标。 是为了证明 KLF15 和 PPARa 激动剂的组合是一种新的治疗策略 减轻 DNA 损伤后的 PT 损伤 确定治疗 AKI 的新靶点具有重要意义。 鉴于美国退伍军人慢性肾病的负担很重,因此向退伍军人管理局提出了这一要求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sandeep K Mallipattu其他文献

The Prevalence of Post-Acute Sequelae of COVID-19 in Solid Organ Transplant Recipients: Evaluation of Risk in the National COVID Cohort Collaborative (N3C).
实体器官移植受者中 COVID-19 急性后遗症的患病率:国家 COVID 队列协作组织 (N3C) 的风险评估。
  • DOI:
    10.1016/j.ajt.2024.06.001
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Vinson;Makayla Schissel;A. Anzalone;Ran Dai;E. French;A. Olex;Stephen B. Lee;Michael Ison;R. Mannon;A. Wilcox;Adam M. Lee;Alexis Graves;A. Anzalone;A. Manna;Amit Saha;A. Olex;Andrea Zhou;Andrew E. Williams;Andrew Southerland;A. Girvin;Anita Walden;Anjali A. Sharathkumar;B. Amor;Benjamin Bates;Brian Hendricks;Brijesh Patel;Caleb Alexander;Carolyn T Bramante;C. Ward‐Caviness;C. Madlock;Christine Suver;C. Chute;Christopher Dillon;Chunlei Wu;Clare Schmitt;Cliff Takemoto;D. Housman;D. Gabriel;David A. Eichmann;Diego Mazzotti;Don Brown;Eilis Boudreau;Elaine Hill;Elizabeth Zampino;E. Marti;Emily Pfaff;E. French;F. Koraishy;Federico Mariona;Fred Prior;G. Sokos;Greg Martin;H. Lehmann;Heidi Spratt;Hemalkumar Mehta;Hongfang Liu;Hythem Sidky;J. Hayanga;Jami D. Pincavitch;Jaylyn F. Clark;Jeremy Harper;Jessica Islam;Jin Ge;J. Gagnier;J. Saltz;J. Saltz;Johanna J. Loomba;Jon D. Buse;Jomol P Mathew;J. Rutter;J. McMurry;Justin Guinney;J. Starren;Kay Crowley;K. Bradwell;Kellie M. Walters;K. Wilkins;Kenneth R. Gersing;K. Cato;Kimberly Murray;K. Kostka;Lavance Northington;Lee A. Pyles;Leonie Misquitta;Lesley Cottrell;L. Portilla;Mariam Deacy;Mark Bissell;M. Clark;M. Emmett;M. Saltz;M. Palchuk;Melissa A. Haendel;Meredith Adams;Meredith Temple;Michael G. Kurilla;Michele Morris;N. Qureshi;Nasia Safdar;Nicole Garbarini;Noha Sharafeldin;O. Sadan;P. A. Francis;P. W. Burgoon;Peter Robinson;Philip R. O. Payne;Rafael Fuentes;R. Jawa;Rebecca Erwin;Rena C Patel;Richard A. Moffitt;R. Zhu;R. Kamaleswaran;R. Hurley;Robert T. Miller;S. Pyarajan;Sam G. Michael;Samuel Bozzette;Sandeep K Mallipattu;Satyanarayana Vedula;Scott A. Chapman;Shawn T O'Neil;Soko Setoguchi;Stephanie S. Hong;Steve Johnson;Tellen D. Bennett;Tiffany J. Callahan;Umit Topaloglu;Usman Sheikh;Valery Gordon;V. Subbian;Warren Kibbe;Wenndy Hernandez;Willarene P. Beasley;W. Cooper;W. Hillegass;X. Zhang
  • 通讯作者:
    X. Zhang

Sandeep K Mallipattu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sandeep K Mallipattu', 18)}}的其他基金

Single-cell Cyclic Multiplex in Situ Tagging to Advance Kidney Research
单细胞循环多重原位标记促进肾脏研究
  • 批准号:
    10790122
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Small Molecule KLF15 Agonists for Kidney Disease
治疗肾脏疾病的小分子 KLF15 激动剂
  • 批准号:
    10553107
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Small Molecule KLF15 Agonists for Kidney Disease
治疗肾脏疾病的小分子 KLF15 激动剂
  • 批准号:
    10117332
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Small Molecule KLF15 Agonists for Kidney Disease
治疗肾脏疾病的小分子 KLF15 激动剂
  • 批准号:
    10359057
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
ShEEP Request for High-throughput Single Cell Genomics Instrumentation
ShEEP 请求高通量单细胞基因组学仪器
  • 批准号:
    9795153
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Transcriptional control of mitochondrial function by KLF6 in diabetic kidney disease
KLF6 在糖尿病肾病中对线粒体功能的转录控制
  • 批准号:
    10400042
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Transcriptional control of mitochondrial function by KLF6 in diabetic kidney disease
KLF6 在糖尿病肾病中对线粒体功能的转录控制
  • 批准号:
    9918361
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Transcriptional control of mitochondrial function by KLF6 in diabetic kidney disease
KLF6 在糖尿病肾病中对线粒体功能的转录控制
  • 批准号:
    9286505
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
The Role of KLF15 as a transcriptional regulator of podocyte differentiation
KLF15 作为足细胞分化转录调节因子的作用
  • 批准号:
    8750137
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
The Role of KLF15 as a transcriptional regulator of podocyte differentiation
KLF15 作为足细胞分化转录调节因子的作用
  • 批准号:
    8916713
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:

相似海外基金

lmmunomodulatory roles of renal lymphatic endothelial cells in Acute Kidney Injury
肾淋巴内皮细胞在急性肾损伤中的免疫调节作用
  • 批准号:
    10612171
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
TIGIT in acute kidney injury and repair
TIGIT在急性肾损伤和修复中的作用
  • 批准号:
    10584173
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neural and Renal Contributions to Hypertension with Androgen Deprivation Therapy
雄激素剥夺疗法对高血压的神经和肾脏影响
  • 批准号:
    10662133
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Hepcidin-Ferroportin-Iron Axis in Cardiac Surgery-associated Acute Kidney Injury
心脏手术相关急性肾损伤中的铁调素-铁转运蛋白-铁轴
  • 批准号:
    10659183
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A new therapeutic approach against kidney damage in LN and COVID-19
针对 LN 和 COVID-19 肾损伤的新治疗方法
  • 批准号:
    10595512
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了