Social and Behavioral Determinants of Health in High-Risk Veterans

高风险退伍军人健康的社会和行为决定因素

基本信息

项目摘要

Background. Social factors exert a substantially more potent impact on health than does health care, especially among disadvantaged populations such as VA users. Adverse social determinants of health (SDH)—factors such as housing instability, food insecurity, social isolation, and transportation barriers—are linked to problems with access, poorer clinical outcomes, and increased health care costs. Despite the clinical and business case for integrating SDHs into health care, these factors are not systematically assessed or addressed in clinical settings. Significance/Impact. This study will leverage a previous survey of Veterans at high-risk for hospitalization, and a new survey to be fielded to a nationally-representative sample of Veterans, to determine how SDHs influence clinical, health care utilization, and experience outcomes. Review of findings by key stakeholders will generate recommended SDH measures for universal screening within VA. These steps, coupled with qualitative interviews about implementation challenges, will inform the future integration of high-value patient-reported SDH measures into VA’s health record. Innovation. The proposed work is innovative in its evaluation of a broad array of SDHs in high-need Veterans to identify candidate measures for electronic health record (EHR) integration. The study will leverage a theoretically-driven survey of SDH measures with a data-driven approach to identifying the associations between these SDHs and a range of health, utilization, and patient experience outcomes. Results from these analyses will inform a facilitated deliberative process to prioritize high-value, validated, and actionable measures that are predictive of outcomes that are important to Veterans and the VA. Specific Aims. In Aim 1, we will use data from an Office of Primary Care-funded survey of Veterans at high-risk for hospitalization to examine relationships between patient-reported SDH measures and utilization, cost, and days in the community outcomes. In Aim 2, we will field a survey to a nationally-representative sample of VA patients to determine the association between SDH measures and key outcomes, and to examine the prevalence of SDHs in subpopulations of Veterans who are disproportionately affected by disparities (e.g., women, racial/ethnic minorities, and rural Veterans). Aims 1 and 2 will inform partner and stakeholder discussions in Aim 3 to identify measures that are associated with key outcomes and that are perceived by operations partners as actionable (i.e., addressable through VA or community services) and thereby good candidates for EHR integration. Methodology. In Aim 1, we will leverage data from an operations-funded survey that our team administered in 2018. Using survey data for 4,685 Veterans at high-risk for hospitalization, we will examine the association between patient-reported SDHs and utilization (i.e., VA and Medicare emergency department visits and hospitalizations), VA and Medicare costs, and days in the community. In Aim 2, we will field a similar survey to a nationally-representative sample of Veterans, evaluate the association between SDHs, patient experiences (e.g., perceived access and coordination), and 12-month VA emergency department visits, hospitalizations, and costs, and describe the prevalence of SDHs in the general VA population and Veterans who are at risk for health disparities. In Aim 3, we will use a facilitated deliberative process with key stakeholders to prioritize actionable SDH measures for EHR integration, and then conduct qualitative interviews with health system leaders, clinicians, staff, and patients to examine implementation barriers and facilitators to assessing select SDH measures at point of care. Implementation/Next Steps. This study addresses health equity, particularly relevant in light of COVID-19, and will be conducted with partners from VA’s Offices of Primary Care, Health Equity, Rural Health, and Women’s Health. The study is especially timely with VA’s transition to the new Cerner EHR as the proposed aims will identify SDH measures for potential EHR integration that are concise, actionable, and predictive of important outcomes.
背景。与医疗保健相比,社会因素对健康产生的潜在影响更大,尤其是 在诸如VA用户之类的令人不安的人群中。不利的卫生社会决定者(SDH) - 这种因素这样 作为住房不稳定,粮食不安全,社会隔离和运输障碍,与问题有关 进入,临床结果较差,并增加了医疗保健成本。尽管有临床和业务案例 将SDH集成到医疗保健中,这些因素未在临床环境中系统地评估或解决。 意义/影响。这项研究将利用先前对高危退伍军人的调查进行住院,并 新的调查将对退伍军人的全国代表性样本进行,以确定SDHS的影响 临床,医疗保健利用和经验成果。关键利益相关者对发现的审查将产生 建议在VA内进行通用筛查的SDH措施。这些步骤,再加上定性访谈 关于实施挑战,将告知未来的高价值患者报告的SDH测量值 进入VA的健康记录。 创新。拟议的工作在评估高等退伍军人的广泛SDH时具有创新性 确定电子健康记录(EHR)集成的候选措施。该研究将利用 理论驱动的SDH措施调查采用数据驱动的方法来识别识别关联 这些SDH以及一系列健康,利用和患者经验结果。这些分析的结果 将告知一项便利的审议过程,以优先考虑高价值,经过验证和可行的措施 预测对退伍军人和VA很重要的结果。 具体目标。在AIM 1中,我们将使用高风险的资深资深人士调查办公室的数据 用于检查患者报告的SDH测量与利用率,成本和天数之间的关系 在AIM 2中,我们将对VA患者的全国代表性样本进行调查 确定SDH度量和关键结果之间的关联,并检查SDH在 受到差异影响不成比例的退伍军人的亚群(例如,妇女,种族/族裔少数民族, 和粗糙的退伍军人)。目标1和2将在AIM 3中告知合作伙伴和利益相关者讨论以确定措施 与关键结果相关的,并且经营合作伙伴认为这些结果是可行的(即 可通过VA或社区服务解决),从而获得EHR整合的好候选人。 方法论。在AIM 1中,我们将利用我们团队管理的运营资助调查中的数据 2018年。使用4,685名在高危住院的退伍军人的调查数据,我们将检查该协会 在患者报告的SDHS和利用之间(即VA和Medicare急诊科和 住院),VA和Medicare费用以及社区的天数。在AIM 2中,我们将对 一个国家代表性的退伍军人样本,评估SDH,患者经验之间的关联 (例如,感知到的访问和协调)以及12个月的VA急诊室就诊,住院和 成本,并描述有健康风险的VA人口和退伍军人中SDH的普遍性 差异。在AIM 3中,我们将利用促进的审议过程与主要利益相关者优先考虑可行的优先级 SDH衡量EHR集成,然后对卫生系统领导者进行定性访谈, 临床医生,员工和患者检查实施障碍和促进者评估某些SDH 护理点的措施。 实施/下一步。这项研究涉及健康公平,特别是根据Covid-19的相关,以及 将与弗吉尼亚州初级保健,卫生公平,农村健康和妇女办公室的合作伙伴一起进行 健康。这项研究尤其及时,因为VA向新的Cerner EHR过渡,因为拟议的目标将确定 SDH测量潜在的EHR整合,这些整合是简洁,可行且可预测重要结果的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATTHEW L MACIEJEWSKI其他文献

MATTHEW L MACIEJEWSKI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATTHEW L MACIEJEWSKI', 18)}}的其他基金

Social and Behavioral Determinants of Health in High-Risk Veterans
高风险退伍军人健康的社会和行为决定因素
  • 批准号:
    10313362
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
HSR&D Senior Research Career Scientist Award
高铁
  • 批准号:
    10197060
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
HSR&D Senior Research Career Scientist Award
高铁
  • 批准号:
    10392930
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
HSR&D Senior Research Career Scientist Award
高铁
  • 批准号:
    10004974
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Measuring the Longitudinal Relationshipsbetween Obesity, Weight Management Intervention, and Medical Expenditure
测量肥胖、体重管理干预和医疗支出之间的纵向关系
  • 批准号:
    10209965
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Measuring the Longitudinal Relationshipsbetween Obesity, Weight Management Intervention, and Medical Expenditure
测量肥胖、体重管理干预和医疗支出之间的纵向关系
  • 批准号:
    10759361
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Long-term Mental Health Outcomes of Bariatric Surgery
减肥手术的长期心理健康结果
  • 批准号:
    9352800
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Risk Stratification and Tailoring of Prevention Programs
风险分层和预防计划的定制
  • 批准号:
    9768329
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Long-term Mental Health Outcomes of Bariatric Surgery
减肥手术的长期心理健康结果
  • 批准号:
    9922248
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Long-term Mental Health Outcomes of Bariatric Surgery
减肥手术的长期心理健康结果
  • 批准号:
    9076320
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:

相似海外基金

ED-LEAD: Emergency Departments LEading the transformation of Alzheimer's and Dementia care
ED-LEAD:急诊科引领阿尔茨海默病和痴呆症护理的变革
  • 批准号:
    10709334
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Emergency Care Redesign (ECR)
紧急护理重新设计 (ECR)
  • 批准号:
    10709338
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Using Small Area Variation Analysis to Investigate Sources of Practice Variation for Febrile Infants at Risk for Invasive Bacterial Infections
使用小面积变异分析来调查有侵袭性细菌感染风险的发热婴儿的实践变异来源
  • 批准号:
    10588846
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Nurse Led Telephonic Care
护士主导的电话护理
  • 批准号:
    10709339
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Optimizing Suicide Prevention Strategies for Pediatric Primary Care
优化儿科初级保健的自杀预防策略
  • 批准号:
    10649853
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了