Development of functional genomic technologies in mice
小鼠功能基因组技术的发展
基本信息
- 批准号:10506700
- 负责人:
- 金额:$ 11.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAddressBiological AssayBrainCRISPR screenCatalogsCellsChIP-seqChromosome MappingClustered Regularly Interspaced Short Palindromic RepeatsCodeColorComplexCultured CellsDNADNA SequenceDNA Transposable ElementsDataDependovirusDevelopmentDiseaseEctodermElectroporationElementsEmbryoEndodermEnhancersEnsureFemaleFutureGenetic Enhancer ElementGenomeGenomicsGerm LayersGlycoproteinsGoalsGuide RNAHeartHeterozygoteHuman GenomeIn VitroIndividualKnock-outLeadLibrariesLiverMammalian OviductsMeasuresMentorsMesodermMethodsMusMutagenesisMutationNucleic Acid Regulatory SequencesNucleotidesOrganismPenetrationPhasePhenotypePublicationsRegulator GenesRegulatory ElementReporterReportingResearchResearch PersonnelSerotypingSingle Nucleotide PolymorphismSpecificitySystemTechniquesTechnologyTestingThickTimeTissuesTrainingTransgenic MiceTransposaseUntranslated RNAVariantZona Pellucidabase editorcareercell typeds-DNAextracellularfunctional genomicsgain of functiongastrulationgene functiongenome wide association studygenome-widegenomic datagenomic toolshigh throughput screeninghigh throughput technologyhuman diseasein vivoloss of functionnovelpregnantpreventprime editorpromoterscreeningtoolzygote
项目摘要
PROJECT SUMMARY
Mutations in gene regulatory elements (REs) are a major cause of human disease. For example, the majority
(>90%) of disease related genome wide association studies (GWAS) found associations with variants in non-
coding and likely regulatory regions in the genome. Despite their importance, the code and grammar of these
regulatory elements remains largely unknown making the understanding of how mutations in these sequences
can lead to disease even more complex. Regulatory elements can be identified in a genome-wide manner
using techniques such as ChIP-seq or ATAC-seq. However, these methods are descriptive and do not provide
a functional readout that tests whether these elements are indeed functional. Massively parallel reporter
assays (MPRAs) and CRISPR-based screens have recently been developed to functionally characterized
these elements in a high-throughput manner. However, most of these techniques use cultured cells to measure
activity. As such, the activity and function of these elements and their variants in an organism has not been
tested. Due to this, complex phenotypes, such as spatial-temporal, and tissue/cell type specificity and
interactions cannot be assessed for these elements. In this K99/R00 application, I will develop technologies
that will allow to functionally characterize regulatory elements and variants in a high throughput manner in
mice. One of the biggest barriers that prevent high-throughput assays in mice is the zona pellucida that
surrounds one-cell stage embryos and prevents double-stranded DNA to be inserted. Recent reports and my
own preliminary data show that by utilizing adeno associated virus serotype 6 (AAV6) as a delivery tool, DNA
can integrate into one-cell stage embryos. I plan to use AAV6 along with the PiggyBac transposase system,
that allows for genomic integration in all three-germ layers, to develop MPRA in mice (Aim K1). To validate the
effect of single nucleotide variants, I will develop large-scale CRISPR saturation mutagenesis assays in mice.
This will be done by utilizing in vitro electroporation into embryos and base-editor or prime-editor transgenic
mice (Aim K2). Finally, I will apply these technologies to generate a catalog of functional regulatory elements,
including transposable elements, involved in differentiation of the three primary germ layers (Aim R1). The
results from this proposal will provide novel in vivo high-throughput technologies that will enable to study
regulatory elements and disease-associated variants at any developmental time stage in mice. My career goal
is to lead an independent research group developing novel functional genomics tools in mice and studying the
function of gene regulatory elements and their variants in tissue development and disease utilizing these
technologies. To achieve this goal, I will receive experimental and computational training from my mentors Drs.
Nadav Ahituv and Jay Shendure. This rigorous mentored support and results obtained in the K99 phase will
ensure my transition to an independent investigator and future successful independent career.
项目概要
基因调控元件(RE)突变是人类疾病的主要原因。例如,大多数
(>90%) 的疾病相关全基因组关联研究 (GWAS) 发现与非基因变异的关联
基因组中的编码区和可能的调控区。尽管它们很重要,但它们的代码和语法
调控元件在很大程度上仍然未知,因此需要了解这些序列中的突变是如何发生的
可能导致疾病更加复杂。可以以全基因组的方式识别调控元件
使用 ChIP-seq 或 ATAC-seq 等技术。然而,这些方法都是描述性的,并没有提供
功能读数,用于测试这些元件是否确实具有功能。大规模并行报告器
最近已开发出基于 CRISPR 的分析(MPRA)和筛选来进行功能表征
以高通量的方式处理这些元素。然而,大多数这些技术使用培养细胞来测量
活动。因此,这些元素及其变体在生物体中的活性和功能尚未得到证实。
已测试。因此,复杂的表型,例如时空、组织/细胞类型特异性和
无法评估这些元素的相互作用。在这个K99/R00应用中,我将开发技术
这将允许以高通量方式对调控元件和变体进行功能表征
老鼠。阻碍小鼠高通量检测的最大障碍之一是透明带
包围单细胞阶段胚胎并阻止双链 DNA 插入。最近的报告和我的
我们自己的初步数据表明,通过利用腺相关病毒血清型 6 (AAV6) 作为传递工具,DNA
可以整合到单细胞阶段胚胎中。我计划将 AAV6 与 PiggyBac 转座酶系统一起使用,
允许在所有三胚层中进行基因组整合,从而在小鼠中开发 MPRA(Aim K1)。为了验证
为了研究单核苷酸变异的影响,我将在小鼠中开发大规模 CRISPR 饱和诱变试验。
这将通过利用体外电穿孔进入胚胎和碱基编辑器或初等编辑器转基因来完成
小鼠(目标 K2)。最后,我将应用这些技术来生成功能调控元件的目录,
包括参与三个初级胚层分化的转座因子(Aim R1)。这
该提案的结果将提供新颖的体内高通量技术,使研究
小鼠任何发育时间阶段的调控元件和疾病相关变异。我的职业目标
领导一个独立研究小组在小鼠中开发新型功能基因组学工具并研究
利用这些基因调控元件及其变体在组织发育和疾病中的功能
技术。为了实现这一目标,我将接受我的导师 Drs. 的实验和计算培训。
纳达夫·阿希图夫和杰伊·申杜尔。这种严格的指导支持和在 K99 阶段获得的结果将
确保我向独立调查员的过渡以及未来成功的独立职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aki Ushiki其他文献
Aki Ushiki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Macrophage metabolism in diabetes and tuberculosis comorbidity
糖尿病和结核病合并症中的巨噬细胞代谢
- 批准号:
10645801 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别:
Deciphering neural crest-specific TFAP2 pathways in midface development and dysplasia
解读中面部发育和发育不良中神经嵴特异性 TFAP2 通路
- 批准号:
10676016 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别:
A democratized platform for mapping the spatial epigenome in tissue
用于绘制组织空间表观基因组图谱的民主化平台
- 批准号:
10822023 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别: