Characterization of structural elements controlling Cas9-mediated DNA cleavage and single-turnover enzyme kinetics.
控制 Cas9 介导的 DNA 切割和单周转酶动力学的结构元件的表征。
基本信息
- 批准号:10461615
- 负责人:
- 金额:$ 3.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-16 至 2023-11-19
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityBindingBiochemicalBiological AssayBiomedical ResearchBiophysicsCRISPR screenCatalysisClustered Regularly Interspaced Short Palindromic RepeatsComplexCryoelectron MicroscopyDNADNA RepairDevelopmentDiseaseDisease modelDissociationDistalDouble Strand Break RepairElementsEngineeringEnzymatic BiochemistryEnzyme KineticsEnzymesEventExhibitsGalactosidaseGene ExpressionGenesGenetic TranscriptionGenomeGenome engineeringGenomicsGoalsGuide RNAHydrolysisImmune systemImpairmentIn VitroKineticsLengthLibrariesMeasuresMediatingMethodsMolecularMolecular ConformationMonitorMutagenesisMutagensNucleic AcidsOrganismProteinsReactionResearchResolutionScreening ResultSiteSite-Directed MutagenesisStreptococcus pyogenesStructureSystemTechniquesTechnologyTestingTimeVariantVisualizationWorkbeta-Galactosidasechromatin remodelingds-DNAendonucleasefield studyflexibilitygenome editingin vivoinnovationinsightmutantnovelnucleaseparticlepreventprogramsrational designsuccesstool
项目摘要
ABSTRACT
The CRISPR/Cas9 system offers an extremely versatile genome editing technology by employing an RNA-
guided endonuclease, Cas9. Originally isolated from Streptococcus pyogenes, this system has been adapted
for use in a wide range of organisms and can be programmed to manipulate almost any site in the genome.
While Cas9 is easy to reprogram, the efficiency of Cas9-mediated editing varies considerably across different
genomic targets. Unlike other common bacterial endonucleases, Cas9 exhibits single-turnover kinetics where it
forms a stable product complex and requires an external force to release the cut DNA. This persistent product
state impairs access to the double-strand break by repair machinery and contributes to reduced genome editing
efficiency. Despite an abundance of Cas9 structures, the structure of the product complex remains
uncharacterized as previous studies were carried out under conditions that prevent DNA cleavage. As a result,
our structural understanding of the entire Cas9 reaction cycle remains incomplete and insufficient to explain why
Cas9 exhibits single-turnover kinetics. Our lab recently used cryo-EM to determine the structure of the
catalytically active Cas9-sgRNA-dsDNA ternary complex and captured three distinct conformational states (pre-
and post-catalytic, and product states). These structures provide new insight into the coordination of Cas9
domains throughout catalysis and reveal persistent Cas9-nucleic acid interactions in the product state. Guided
by this new insight, we will expand upon these studies to define the major structural elements contributing to
Cas9 catalysis and single-turnover kinetics. Using innovative in vitro kinetic assays and established structural
analyses, we will investigate the structural features that control the rate at which Cas9 cuts and releases the
targeted DNA. Using rational design in conjunction with random mutagenesis, we will engineer a multi-turnover
enzyme capable of spontaneously releasing its cleaved DNA product. Using an in vitro genome editing assay
and an in vivo -galactosidase assay, we will screen Cas9 mutants for an increased rate of DNA cleavage. We
anticipate the proposed studies will not only advance our molecular understanding of the Cas9 reaction cycle,
but also support the development of more efficient CRISPR/Cas9 technologies.
抽象的
CRISPR/CAS9系统通过采用RNA-提供了极其通用的基因组编辑技术
指导性核酸内切酶,CAS9。该系统最初是从链球菌中分离出来的,已适应
用于在广泛的生物中使用,可以编程以操纵基因组中的任何位点。
虽然CAS9易于重新编程,但仔细的CAS9介导的编辑品种的效率
基因组靶标。与其他常见的细菌不同,CAS9表现出单转动力学
形成稳定的产品配合物,需要外力释放切割的DNA。这个持久的产品
状态会损害通过修复机械的访问双链断裂的机会,并有助于减少基因组编辑
效率。尽管CAS9结构是抽象的,但产品络合物的结构仍保持
在预防DNA裂解的条件下进行了以前的研究。因此,
我们对整个CAS9反应周期的结构理解仍然不完整,不足以解释为什么
CAS9表现出单位动力学。我们的实验室最近使用冷冻EM来确定
催化活性的Cas9-SgrNA-DSDNA三元复合物,并捕获了三个不同的构象状态(前
和催化后和产品状态)。这些结构为CAS9的协调提供了新的见解
整个催化和揭示了产品状态中持续的cas9-核酸相互作用。指导
通过这种新见解,我们将扩展这些研究,以定义有助于
CAS9催化和单位动力学。使用创新的体外动力学测定并建立结构
分析,我们将研究控制CAS9削减速率并释放速率的结构特征
靶向DNA。使用合理设计与随机诱变结合使用,我们将设计多变态
能够释放其切割的DNA产物的酶。使用体外基因组编辑测定法
和一个体内半乳糖苷酶测定法,我们将筛选Cas9突变体以增加DNA裂解速率。我们
预期所提出的研究不仅会提高我们对Cas9反应周期的分子理解
但也支持开发更有效的CRISPR/CAS9技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaitlyn Kiernan其他文献
Kaitlyn Kiernan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习预测小分子与人类突变激酶结合亲和力的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
反复非平衡结合联合迭代筛选发掘混合物中痕量高亲和力配体的方法及其应用
- 批准号:82273900
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
全新从头快速设计靶向COVID-19病毒及其突变株S蛋白超高亲和力阻断结合蛋白研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 3.08万 - 项目类别:
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 3.08万 - 项目类别:
Selective targeting of matrix metalloproteinases for developing preterm labor therapeutics
选择性靶向基质金属蛋白酶用于开发早产疗法
- 批准号:
10509786 - 财政年份:2023
- 资助金额:
$ 3.08万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 3.08万 - 项目类别: