Niche signals in HSC genesis
HSC 发生中的生态位信号
基本信息
- 批准号:9547399
- 负责人:
- 金额:$ 64.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAgonistAlgorithmsAortaBiological AssayBlood VesselsBypassCandidate Disease GeneCell Culture TechniquesCell-Free SystemCellsCellular biologyClinicalCoculture TechniquesDevelopmentEmbryoEmbryonic DevelopmentEndothelial CellsEngineeringGene Expression ProfilingGenerationsGoalsGonadal structureGrantHematological DiseaseHematopoietic Stem Cell TransplantationHematopoietic stem cellsHeritabilityHumanIn VitroInterdisciplinary StudyLaboratoriesMachine LearningMediatingMesonephric structureMethodsMolecularMolecular AnalysisPathway interactionsPhysiological ProcessesPluripotent Stem CellsPopulation HeterogeneityResolutionRoleSignal PathwaySignal TransductionSignaling MoleculeSorting - Cell MovementSourceStem Cell DevelopmentStromal CellsSystemSystems DevelopmentTestingTherapeuticTransplantationbaseblastomere structureboneclinical applicationclinical translationdesignembryonic stem cellgenome-widein vivoindexinginnovationinsightloss of functionnotch proteinnovelnovel strategiesprogramsreceptorself-renewalsingle-cell RNA sequencingstemstem cell fate specificationstem cell populationtranscription factor
项目摘要
PROJECT SUMMARY
Hematopoietic stem cells (HSC) have well established clinical applications in the treatment of heritable and
acquired blood disorders. However, their therapeutic potential could be significantly broadened by engineering
novel methods to generate HSC de novo from pluripotent stem cells or from directly reprogrammed adult cells.
Toward this goal, we have established endothelial cell (EC) niche based culture methods that provide the
necessary conditions to support the specification and self-renewal of HSC from embryonic hemogenic
precursors, and more recently, from adult ECs using transcription factor (TF)-mediated conversion that bypasses
a pluripotent intermediate. We hypothesize that recreating the signals necessary and sufficient to develop a
clinically meaningful system for HSC generation in vitro will necessitate a comprehensive, systems approach to
deconstruct the niche provided signals required for HSC specification and self-renewal. Thus, the overall goal of
this grant is to leverage unique expertise of the collaborating laboratories to elucidate the signaling interactions
regulating HSC specification and self-renewal from embryonic hemogenic precursors or TF-reprogrammed adult
EC in the context of the EC niche. Our approach consists of three overlapping aims. The first aim will identify EC
niche-provided signals necessary for embryonic HSC specification and self-renewal. The second aim will identify
the unique HSC programs induced by these signals that regulate the transition from embryonic hemogenic
precursor to bone fide repopulating HSC. The third will identify comparable programs that regulate the transition
from adult EC to HSC during TF-mediated reprogramming in the EC niche. Key to these studies will be innovative
functional assays, transcriptional profiling methods, and computational approaches that will enable us to resolve
cellular complexity of niche cells and their interactions with developing embryonic or reprogrammed HSC at the
single cell level. The role of identified signal factors in stage-specific support of HSC specification will be validated
and further refined in vitro by gain and loss of function studies in the context of niche EC. Furthermore, to extend
these studies to stromal cell-free systems as a step toward clinical translation, we will also test the contribution
of identified signal factors in HSC specification and self-renewal in the context of stage-specific modulation of
Notch activation using engineered Notch agonists. To achieve the goals of this proposal, we have developed a
multidisciplinary collaboration involving unique expertise in each of our laboratories, including basic HSC and
EC niche cell biology, direct TF based cellular conversion, clinical HSC transplantation, genome wide
assessment of rare stem cell populations at single cell resolution, and innovative computational approaches to
deconstruct core signal pathways regulating developmental transitions. Altogether, we expect the proposed
studies will ultimately guide the design of novel strategies for deriving and expanding HSC in vitro for therapeutic
applications.
项目概要
造血干细胞(HSC)在治疗遗传性和
获得性血液疾病。然而,通过工程设计可以显着扩大它们的治疗潜力
从多能干细胞或直接重编程的成体细胞中重新生成 HSC 的新方法。
为了实现这一目标,我们建立了基于内皮细胞(EC)生态位的培养方法,该方法提供了
支持胚胎造血HSC规范化和自我更新的必要条件
前体细胞,以及最近使用转录因子 (TF) 介导的转换绕过成人 EC
多能中间体。我们假设重新创建必要且充分的信号来开发
具有临床意义的 HSC 体外生成系统需要采用全面的系统方法
解构为 HSC 规范和自我更新提供所需信号的利基。因此,总体目标是
这笔赠款将利用合作实验室的独特专业知识来阐明信号相互作用
调节 HSC 规范和胚胎造血前体或 TF 重编程成人的自我更新
EC 利基背景下的 EC。我们的方法由三个重叠的目标组成。第一个目标是确定 EC
生态位提供胚胎 HSC 规范和自我更新所需的信号。第二个目标将确定
由这些信号诱导的独特 HSC 程序可调节从胚胎造血的转变
骨性再生HSC的前体。第三个将确定规范过渡的类似计划
在 EC 生态位中 TF 介导的重编程期间,从成人 EC 到 HSC。这些研究的关键是创新
功能分析、转录分析方法和计算方法将使我们能够解决
微环境细胞的细胞复杂性及其与发育中的胚胎或重编程的 HSC 的相互作用
单细胞水平。将验证已确定的信号因素在 HSC 规范的特定阶段支持中的作用
并通过利基 EC 背景下的功能获得和丧失研究在体外进一步完善。此外,为了延长
这些研究以无基质细胞系统作为临床转化的一步,我们还将测试其贡献
阶段特定调节背景下 HSC 规范和自我更新中已识别信号因子的研究
使用工程化的 Notch 激动剂激活 Notch。为了实现本提案的目标,我们制定了
多学科合作涉及我们每个实验室的独特专业知识,包括基础 HSC 和
EC 利基细胞生物学、直接基于 TF 的细胞转化、临床 HSC 移植、全基因组
以单细胞分辨率评估稀有干细胞群,以及创新的计算方法
解构调节发育转变的核心信号通路。总而言之,我们预计拟议的
研究最终将指导新策略的设计,用于体外衍生和扩展 HSC 用于治疗
应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IRWIN D BERNSTEIN其他文献
IRWIN D BERNSTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IRWIN D BERNSTEIN', 18)}}的其他基金
Novel regulation of Notch-induced HSPC expansion
Notch诱导的HSPC扩张的新调控
- 批准号:
10595335 - 财政年份:2017
- 资助金额:
$ 64.43万 - 项目类别:
Expansion of Cardiac and Hematopoietic Pregenitors by Wnt and Notch
Wnt 和 Notch 扩增心脏和造血祖细胞
- 批准号:
8107525 - 财政年份:2009
- 资助金额:
$ 64.43万 - 项目类别:
Expansion of Cardiac and Hematopoietic Pregenitors by Wnt and Notch
Wnt 和 Notch 扩增心脏和造血祖细胞
- 批准号:
8462673 - 财政年份:2009
- 资助金额:
$ 64.43万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Microglial process convergence following brain injury
脑损伤后小胶质细胞过程收敛
- 批准号:
10657968 - 财政年份:2023
- 资助金额:
$ 64.43万 - 项目类别:
Modeling genetic contributions to biliary atresia
模拟遗传对胆道闭锁的影响
- 批准号:
10639240 - 财政年份:2023
- 资助金额:
$ 64.43万 - 项目类别:
Dose escalation clinical trial of high-dose oral montelukast to inform future RCT in children with acute asthma exacerbations
大剂量口服孟鲁司特的剂量递增临床试验为哮喘急性发作儿童的未来随机对照试验提供信息
- 批准号:
10649012 - 财政年份:2023
- 资助金额:
$ 64.43万 - 项目类别:
Phentermine/Topiramate in children, adolescents, and young adults with hypothalamic obesity: a pilot and feasibility study
芬特明/托吡酯治疗下丘脑肥胖儿童、青少年和年轻人:一项试点和可行性研究
- 批准号:
10734754 - 财政年份:2023
- 资助金额:
$ 64.43万 - 项目类别:
Evaluating the efficacy of a novel NASH therapeutic
评估新型 NASH 疗法的疗效
- 批准号:
10698971 - 财政年份:2023
- 资助金额:
$ 64.43万 - 项目类别: