Seamless Healing of Avascular Meniscus Tears by Stem Cell Recruitment

通过干细胞募集无缝愈合无血管半月板撕裂

基本信息

  • 批准号:
    9560596
  • 负责人:
  • 金额:
    $ 35.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-06 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Project summary Meniscus injuries are extremely common with approximately one million patients undergoing treatment annually in the U.S. alone. Importantly, meniscal disorders inevitably lead to osteoarthritis (OA), which is the leading cause of disability in this country. As a multiphase fibrocartilage, the outer third of meniscus is a vascularized and collagen-rich fibrous tissue with fibroblast-like cells, whereas the inner third is avascular cartilaginous tissue with rounded chondrocyte-like cells. The middle zone is intermediate fibrocartilaginous tissue with a mixture of fibroblast-like cells and chondrocyte-like cells. Upon injury or defect, the outer zone of meniscus can reliably be repaired and expected to functionally heal. However, tears in the inner avascular region are hard to heal due to poor intrinsic healing capacity based on its highly differentiated cell type, specialized extracellular matrix and lack of blood supply. Despite many attempts to induce functional healing of avascular meniscus, no therapy currently exists that reliably results in seamless healing of inner-zone meniscus tears. Although delivery of stem/progenitor cells showed promise for improved avascular meniscus repair, cell delivery-based approaches have suffered from several translational barriers. Our preliminary study produced novel data showing that meniscus tears in the avascular zone can be healed by timely controlled recruitment and step-wise fibrochondrogenic differentiation of synovial mesenchymal stem/progenitor cells (MSCs). The recruitment and step-wise differentiation was successfully regulated by a single injection of CTGF-loaded bio-glue mixed with PLGA µS-encapsulating TGFβ3. Accordingly, the overall objective of the proposed projects is to establish a novel and efficient clinically relevant strategy for seamless healing of avascular meniscus tears by recruiting endogenous stem/progenitor cells. Our overarching hypothesis is that temporal control of stem cell recruitment into bio-glue and step-wise fibrocartilaginous differentiation leads to seamless healing of avascular meniscus tears. We here propose 1) to determine effective compositions of an injectable and adhesive hydrogel to guide avascular meniscus healing, 2) to determine effective doses and release rates of growth factors to enhance avascular meniscus healing in vitro, and 3) to enhance avascular meniscus healing by endogenous stem/progenitor cells in vivo. The expected outcome of the proposed studies will serve as an important foundation to develop a translational tool to improve treatment for avascular meniscus tears and defects, thus benefiting millions of patients with meniscus injuries and in turn lowering the incidence of osteoarthritis.
项目摘要 半月板受伤非常普遍,大约一百万吨接受治疗 仅在美国,一年一度。 该国的残疾主要原因是多相纤维球杆菌 具有成纤维细胞样细胞的血管化和富含胶原蛋白的裂变,而内部三分 带有圆形chon的细胞样细胞的软骨组织中间区域是中间区域 与成纤维细胞样细胞的混合物和孔状细胞的混合物。 半月板可以可靠地修复,并有效健康。 由于其高度分化的细胞类型,由于固有的愈合能力差而难以愈合,因此 专门的细胞外基质和缺乏血液疗法。 目前尚无疗法可靠地导致无缝无血液无血管, 半月板撕裂。 维修,基于细胞的方法已经遭受了我们的初步研究 产生的新数据表明,可以及时控制的血管区域的半月板撕裂可以治愈 滑膜间充质茎/祖细胞的募集和逐步的纤维软化差异化 (MSC)。 CTGF负载的生物胶与PLGA µS封闭TGFβ3的混合。 支撑项目是建立一种新颖有效的临床相关策略,以无缝治愈 通过招募内源性茎/祖细胞的血管半月板撕裂。 将干细胞募集到生物胶水和明智的纤维化脂肪分化中的时间控制导致 无缝治愈无血管弯;我们提出了1) 注射和粘合水凝胶可引导血管半月板愈合,2)确定有效剂量和 生长因子的释放速率增强体外血管弯板,3)增强血管 在体内通过内源性茎/祖细胞愈合。 研究将是开发转化工具以改善AvascularR治疗的重要基础 半月板撕裂和缺陷,因此受益于半月板受伤的患者,进而使您降低 骨关节炎的发生率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chang Hun Lee其他文献

Flash Memory Fabricated with Protein-Mediated PbSe Nanocrystal Assembly as Floating Gate
用蛋白质介导的 PbSe 纳米晶体组件作为浮栅制造闪存
An In vitro Animal Study of the Biomechanical Responses of Anulus Fibrosus With Aging
纤维环随衰老的生物力学反应的体外动物研究
  • DOI:
    10.1097/01.brs.0000162531.49297.43
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3
  • 作者:
    C. Park;Young Jick Kim;Chang;K. An;H. J. Shin;Chang Hun Lee;C. Kim;Jung
  • 通讯作者:
    Jung
Anti-fouling performance of chevron plate heat exchanger by the surface modification
人字形板式换热器表面改性防垢性能
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Ahn;Koung Moon Kim;Sun Taek Lim;Chang Hun Lee;Seok Won Han;Hong Choi;S. Koo;Namkeun Kim;D. Jerng;S. Wongwises
  • 通讯作者:
    S. Wongwises
Longitudinal changes in fatty liver index are associated with risk of hepatocellular carcinoma: A nationwide cohort study in Korea.
脂肪肝指数的纵向变化与肝细胞癌的风险相关:韩国的一项全国性队列研究。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    25.7
  • 作者:
    Min Gu Kang;Chang Hun Lee;Chen Shen;Jong Seung Kim;Ji Hyun Park
  • 通讯作者:
    Ji Hyun Park
A Case of Fulminant Type 1 Diabetes with Pulmonary Hypertension.
暴发性 1 型糖尿病合并肺动脉高压一例。
  • DOI:
    10.4093/jkda.2007.31.5.444
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Do Hyeong Kim;M. K. Kim;JunHyun Jung;N. Kim;D. Rho;Jong Sun Park;Chang Hun Lee;Y. Cho;Tae Woo Kim;Kyung Il Lee
  • 通讯作者:
    Kyung Il Lee

Chang Hun Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chang Hun Lee', 18)}}的其他基金

Bioactive Scaffold for TMJ Disc Regeneration by Endogenous Stem/Progenitor Cells
内源性干细胞/祖细胞用于 TMJ 椎间盘再生的生物活性支架
  • 批准号:
    10664879
  • 财政年份:
    2020
  • 资助金额:
    $ 35.41万
  • 项目类别:
Bioactive Scaffold for TMJ Disc Regeneration by Endogenous Stem/Progenitor Cells
内源性干细胞/祖细胞用于 TMJ 椎间盘再生的生物活性支架
  • 批准号:
    10450853
  • 财政年份:
    2020
  • 资助金额:
    $ 35.41万
  • 项目类别:

相似国自然基金

髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
  • 批准号:
    82372496
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BEASTS-Novel Biomimetic Liver Platform for Enabling ALD Researchers
BEASTS-为 ALD 研究人员提供支持的新型仿生肝脏平台
  • 批准号:
    10697452
  • 财政年份:
    2023
  • 资助金额:
    $ 35.41万
  • 项目类别:
Developing Therapeutic Gel Embolic Agents for Arteriovenous Malformation Embolization
开发用于动静脉畸形栓塞治疗的凝胶栓塞剂
  • 批准号:
    10667726
  • 财政年份:
    2023
  • 资助金额:
    $ 35.41万
  • 项目类别:
Tissue Adhesive RNA Interference Nanoparticles to Block Progression of Posttraumatic and Spontaneous Osteoarthritis.
组织粘附 RNA 干扰纳米颗粒可阻止创伤后和自发性骨关节炎的进展。
  • 批准号:
    10539405
  • 财政年份:
    2022
  • 资助金额:
    $ 35.41万
  • 项目类别:
Tissue Adhesive RNA Interference Nanoparticles to Block Progression of Posttraumatic and Spontaneous Osteoarthritis.
组织粘附 RNA 干扰纳米颗粒可阻止创伤后和自发性骨关节炎的进展。
  • 批准号:
    10688080
  • 财政年份:
    2022
  • 资助金额:
    $ 35.41万
  • 项目类别:
Translational regulation of tissue resident macrophages by GCN2
GCN2 对组织驻留巨噬细胞的翻译调节
  • 批准号:
    10417760
  • 财政年份:
    2022
  • 资助金额:
    $ 35.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了