Rehabilitation Using Community-Based Affordable Robotic Exercise Systems (Rehab CARES)
使用基于社区的经济实惠的机器人运动系统进行康复(Rehab CARES)
基本信息
- 批准号:10709654
- 负责人:
- 金额:$ 70.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAdverse eventAlgorithmsCaringCharacteristicsClinicClinicalClinical TrialsClinical assessmentsCollaborationsCommunitiesCompensationComputer softwareControl GroupsDataDay CareDockingDoseEquationExerciseFeedbackFingersFreedomFrequenciesFriendsGoalsHandHealthHealth Care CostsHealth InsuranceHealth care facilityHeart RateHospitalsHourImpaired cognitionImpairmentImprove AccessIndividualInfrastructureInsurance CoverageIntelligenceInterventionLeadLower ExtremityMonitorMotivationMotorMovementMuscleOccupational TherapyPatient-Focused OutcomesPatientsPerformancePersonsPhasePhysical therapyPlayPlay TherapyPopulationPositioning AttributeQuality of CareRandomizedRehabilitation CentersRehabilitation therapyResource-limited settingResourcesRobotRoboticsRuralSafetySocioeconomic StatusSpeech TherapyStrokeSystemTechnologyTestingTherapeuticTimeUpper Extremityarmbasecare seekingclinical predictorscloud basedcohortcommunity based carecostcost effectivedesigndisabilityempowermentexercise rehabilitationexperiencefollow up assessmentforce feedbackfunctional improvementfunctional outcomeshapticshealth care disparityimprovedindividualized medicineinnovative technologiesinstrumentkinematicsmotor controlmotor impairmentmultidisciplinaryneurological rehabilitationnovelnursing skillpost strokerecruitrehabilitation technologyrehabilitative carerobot assistancerobot controlrobot rehabilitationsafety and feasibilitysafety testingsensorstroke patientstroke survivorstroke therapysuccesstargeted treatmenttreatment durationusability
项目摘要
PROJECT SUMMARY
Stroke is the leading cause of serious long-term disability. It is estimated that 5.8–6.5 million people currently
live with stroke related disability in the US and that this number will increase by 20.5% by 2030. The current US
health infrastructure is not prepared for these increasing numbers. Limitations in health insurance coverage and
the shortage of rehabilitation practitioners decrease access to rehabilitation. Community-based settings are
becoming viable venues for delivering long-term post-stroke care, however, they are plagued by staff with limited
expertise, low number of therapists and lack of financial resources for rehabilitation. Because of this, the quality
of care is compromised, and functional outcomes of patients are not equal to hospital-based rehabilitation
settings. We seek to develop a novel solution to this problem. Implementing affordable design is a fundamental
strategy for increasing access to rehabilitation technology for patients regardless of socio-economic status.
Doing so, decreases healthcare disparities and reduces long-term healthcare costs. We propose to use
affordable robots to improve access to quality rehabilitation care in low-resource, community-based settings. In
Phase 1, we leverage a 1 degree of freedom haptic robot with control algorithms to develop a beta version of
the robot hardware and software. The new robot have a novel end-effector to allow more diverse arm and hand
exercises, be connected to cloud-based gaming, and provide patient-specific therapy that adjusts for motor
impairment and cognitive impairment. 15 stroke patients with a wide range of motor impairment levels will
complete clinical assessments of motor and cognitive impairment followed by robot-based assessment and
therapy games. Subjects will be instrumented with sensors monitoring key upper extremity muscle activity, trunk
activity and heart rate during robot tasks. A key milestone will be to identify kinematic metrics from the robot
tasks that strongly correlate and predict clinical scores of motor and cognitive impairment. Another milestone will
to drive patient-specific strategies by adjusting the robot’s control parameters and the game parameters. In
Phase 2, we will develop the hardware to allow three haptic robots to dock (a gym) and be configured to allow
patients to play therapy games alone or collaboratively. We will test the safety and feasibility of the gym in a
community-based rehabilitation setting where stroke patients typically receive 1 hour each of physical therapy
(PT), occupational therapy (OT) and speech therapy (SLP). 36 patients will be randomized to either a robot (RT)
or a control group (CT). Both groups will receive PT and SLP, but the RT will receive the robot gym therapy
targeting the upper limb and the CT will receive a dose-matched hour of OT. Therapy will occur over 4 weeks
with two follow-up assessments. Key milestones will be to show that the RT has the same or better functional
outcomes, motivation, and adverse events as the CT. Also, to show that the robot gym is a cost-effective solution
to increasing access to quality rehabilitation care in low-resource, community-based settings. Success here will
validate this potential solution, justify design changes revealed via user-feedback and a larger clinical trial.
项目概要
据估计,目前有 5.8-650 万人中风是导致严重长期残疾的主要原因。
在美国,患有中风相关残疾的人到 2030 年这一数字将增加 20.5%。
医疗基础设施尚未为这些不断增加的人数做好准备,而且医疗保险覆盖面也存在局限性。
康复从业者的短缺减少了社区康复的机会。
成为提供长期中风后护理的可行场所,然而,它们受到工作人员能力有限的困扰
专业知识、治疗师数量少以及缺乏康复资金,因此质量较差。
护理受到损害,患者的功能结果不等于医院康复
我们寻求开发一种新颖的解决方案来解决这个问题,实现经济实惠的设计是一个根本。
增加患者获得康复技术的机会的战略,无论其社会经济地位如何。
这样做可以减少医疗保健差异并降低长期医疗保健成本。
经济实惠的机器人可改善资源匮乏的社区环境中获得优质康复护理的机会。
第一阶段,我们利用具有控制算法的 1 自由度触觉机器人来开发 Beta 版本
新机器人有一个新颖的末端执行器,可以实现更多样化的手臂和手。
练习,连接到基于云的游戏,并提供针对运动调整的患者特定治疗
15 名具有广泛运动障碍水平的中风患者将出现损伤和认知障碍。
完成运动和认知障碍的临床评估,然后进行基于机器人的评估和
治疗游戏将配备传感器来监测关键的上肢肌肉活动、躯干。
机器人任务期间的活动和心率是确定机器人运动学指标的一个关键里程碑。
另一个里程碑将是与运动和认知障碍的临床评分密切相关并进行预测的任务。
通过调整机器人的控制参数和游戏参数来驱动针对患者的特定策略。
第二阶段,我们将开发硬件以允许三个触觉机器人对接(健身房)并进行配置以允许
患者单独或协作玩治疗游戏我们将测试健身房的安全性和可行性。
以社区为基础的康复环境,中风患者通常每人接受 1 小时的物理治疗
(PT)、职业治疗 (OT) 和语言治疗 (SLP) 36 名患者将被随机分配到机器人治疗 (RT) 组。
或对照组 (CT) 两组均将接受 PT 和 SLP,但 RT 组将接受机器人健身治疗。
针对上肢,CT 将接受剂量匹配的 OT 治疗,为期 4 周。
两个后续评估的关键里程碑将是表明 RT 具有相同或更好的功能。
结果、动机和不良事件作为 CT 此外,还表明机器人健身房是一种具有成本效益的解决方案。
增加在资源匮乏、以社区为基础的环境中获得优质康复护理的机会。
验证这一潜在的解决方案,证明通过用户反馈和更大规模的临床试验揭示的设计变更的合理性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHELLE J. JOHNSON其他文献
MICHELLE J. JOHNSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHELLE J. JOHNSON', 18)}}的其他基金
CT imaging-based prediction and stratification of motor and cognitive behavior after stroke for targeted game-based robot therapy: Diversity Supplement
基于 CT 成像的中风后运动和认知行为的预测和分层,用于基于游戏的有针对性的机器人治疗:多样性补充
- 批准号:
10765218 - 财政年份:2023
- 资助金额:
$ 70.77万 - 项目类别:
Affordable Robot-Based Assessment of Cognitive and Motor Impairment in People Living with HIV and HIV-Stroke
经济实惠的基于机器人的艾滋病毒感染者和艾滋病毒中风患者认知和运动障碍评估
- 批准号:
10751316 - 财政年份:2023
- 资助金额:
$ 70.77万 - 项目类别:
Rehabilitation Using Community-Based Affordable Robotic Exercise Systems (Rehab CARES)
使用基于社区的经济实惠的机器人运动系统进行康复(Rehab CARES)
- 批准号:
10923752 - 财政年份:2022
- 资助金额:
$ 70.77万 - 项目类别:
Rehabilitation Using Community-Based Affordable Robotic Exercise Systems (Rehab CARES)
使用基于社区的经济实惠的机器人运动系统进行康复(Rehab CARES)
- 批准号:
10675319 - 财政年份:2022
- 资助金额:
$ 70.77万 - 项目类别:
Towards Objective Metrics to Quantify the Role of HIV and Increasing Cognitive Demand on Instrumental ADLs in People Aging with HIV
制定客观指标来量化艾滋病毒的作用以及艾滋病毒感染者对工具性 ADL 认知需求的增加
- 批准号:
10327136 - 财政年份:2021
- 资助金额:
$ 70.77万 - 项目类别:
Rehabilitation Using Community-Based Affordable Robotic Exercise Systems (Rehab CARES)
使用基于社区的经济实惠的机器人运动系统进行康复(Rehab CARES)
- 批准号:
10256401 - 财政年份:2021
- 资助金额:
$ 70.77万 - 项目类别:
Towards Objective Metrics to Quantify the Role of HIV and Increasing Cognitive Demand on Instrumental ADLs in People Aging with HIV
制定客观指标来量化艾滋病毒的作用以及艾滋病毒感染者对工具性 ADL 认知需求的增加
- 批准号:
10468937 - 财政年份:2021
- 资助金额:
$ 70.77万 - 项目类别:
Automated Assessment of Neurodevelopment in Infants at Risk for Motor Disability
自动评估有运动障碍风险的婴儿的神经发育
- 批准号:
9765496 - 财政年份:2019
- 资助金额:
$ 70.77万 - 项目类别:
Automated Assessment of Neurodevelopment in Infants at Risk for Motor Disability
自动评估有运动障碍风险的婴儿的神经发育
- 批准号:
10620100 - 财政年份:2019
- 资助金额:
$ 70.77万 - 项目类别:
SmarToyGym: Smart detection of atypical toy-oriented actions in at-risk infants
SmarToyGym:智能检测高危婴儿的非典型玩具导向行为
- 批准号:
9127310 - 财政年份:2015
- 资助金额:
$ 70.77万 - 项目类别:
相似国自然基金
基于中医舌诊参数及糖脂代谢指标的PCI术后再发心血管不良事件时间序列预测模型研究
- 批准号:82374336
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于效用错位视角的医疗不良事件管理政策的引导体系优化研究
- 批准号:72304012
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于几何形态与生物力学分析预测腹主动脉瘤腔内治疗术后锚定区相关不良事件
- 批准号:82300542
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNB3联合光谱CT冠周脂肪组学预警ACS后心血管不良事件的模型构建
- 批准号:82302186
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 70.77万 - 项目类别:
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 70.77万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 70.77万 - 项目类别:
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
- 批准号:
10784983 - 财政年份:2023
- 资助金额:
$ 70.77万 - 项目类别:
Improving Lipid Management Strategies in Young Adults
改善年轻人的血脂管理策略
- 批准号:
10639036 - 财政年份:2023
- 资助金额:
$ 70.77万 - 项目类别: