Neuroprotective role of GLP-1 receptor agonists
GLP-1 受体激动剂的神经保护作用
基本信息
- 批准号:9549287
- 负责人:
- 金额:$ 98.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AcuteAgeAgingAgonistAlpha CellAlzheimer&aposs DiseaseAnabolismAnimalsApoptosisAppetite RegulationBeta CellBindingBiochemicalBiologicalBrainCaringCell Culture TechniquesCell ProliferationCellsChronicClinicClinicalClinical TrialsClinical assessmentsCollaborationsDegenerative DisorderDementiaDevelopmentDiabetes MellitusDietDipeptidyl PeptidasesDiseaseDrug DesignDrug TargetingElderlyEndocrineEnzymesEpidemicExtramural ActivitiesFoodFormulationFunctional disorderGLP-I receptorGenetic Predisposition to DiseaseGenetic TranscriptionGlucoseGoalsHuntington DiseaseImpairmentIndustryIngestionInsulinKoreaLaboratoriesLifeLinkMetabolismModelingMorbidity - disease rateNerve DegenerationNervous system structureNeurodegenerative DisordersNeurologicNeuronsNon-Insulin-Dependent Diabetes MellitusObesityOxidative StressPancreasParkinson DiseasePathogenicityPeptidesPeripheral NervesPeripheral Nervous System DiseasesPharmaceutical PreparationsPharmacological TreatmentPharmacologyPlasmaPre-Clinical ModelProcessPropertyRanaReportingResearchRisk FactorsRodentRoleSatiationScientistSerine ProteaseStrokeStructure of beta Cell of isletSystemic diseaseTechniquesTestingTissuesTranslatingTranslational ResearchTranslationsTraumatic Brain InjuryUnited States National Institutes of Healthage relatedanalogbasecostdesigndrug candidatedrug developmenteffective therapyepidemiology studyexenatidegastric inhibitory polypeptide receptorglucagon-like peptide 1in vivoin vivo Modelinhibitor/antagonistinsulin secretioninsulin signalinginterestisletmortalitynervous system disorderneuroprotectionnovelnovel therapeuticspeptidomimeticsphysical inactivitypre-clinicalreceptorresponsetooltranslational studytreatment strategytrend
项目摘要
Type 2 diabetes mellitus (T2DM) is a prevalent disease in the elderly for which current treatments are available, but not satisfactory. It is a chronic, age-related degenerative disorder that is a leading cause of morbidity and mortality in the elderly, and has attained epidemic proportion, with in excess of 171 afflicted worldwide (Wild et al., Diabetes Care 27:104753, 2004). A variety of risk factors have been implicated in the development of T2DM (Gtz et al., Cell Mol Life Sci 66:1321-5, 2009; Jin & Patti, Clin Sci (Lond) 116:99-111, 2009), including a genetic predisposition, age, oxidative stress, obesity, diet, and physical inactivity. By comparison, several of these same factors appear to be involved in neurodegenerative disorders, such as Alzheimer's disease (AD), the most common form of dementia (Reddy et al., J Alzheimers Dis 16:763-74, 2009; Luchsinger & Gustafson, J Alzheimers Dis 16:693-704, 2009). Interestingly, a number of well-designed epidemiological studies have established a link between these two diseases, together with others, including Parkinson's disease (PD) and stroke, identifying T2DM as a risk factor for developing various chronic and acute neurodegenerative disorders (Toro et al., J Alzheimers Dis 16:687-91, 2009; Craft, Curr Alzheimer Res 4:147-52, 2007). The pancreas and brain are both highly insulin sensitive tissues. T2DM and AD, together with other neurological conditions, share several clinical and biochemical features. Particularly important amongst these is an impaired insulin signaling, suggesting overlapping pathogenic mechanisms. Hence, an effective treatment strategy in one disease could have potential value in the other.
A recent effective treatment strategy in T2DM is the use of incretin-based therapies based on the insulinotropic actions of the endogenous peptide, glucagon-like peptide-1 (GLP-1), utilizing the long-acting analog exendin-4 (Ex-4) (Lovshin & Drucker, Nat Rev Endocrinol 5:262-9, 2009; Drucker, Diabetes 62:3316-23, 2013). The acute actions of GLP-1 and receptor (R) agonists on beta-cells include stimulation of glucose-dependent insulin release, augmentation of insulin biosynthesis and stimulation of insulin gene transcription. Chronic actions include stimulation of beta-cell proliferation, induction of islet neogenesis and inhibition of beta-cell apoptosis that, together, promote expansion of beta-cell mass and the normalization of insulin signaling (Drucker, Diabetes 64:317-26, 2015). Ex-4 has been reported to readily enter the brain (Kastin et al., Int J Obes Relat Metab Disord 27:313-8, 2003), where the GLP-1R is expressed widely (Perry & Greig, Trends Pharmacol Sci 24:377-83, 2003) and its activation results in multiple biological responses. GLP-1R stimulation in brain is classically allied to regulation of appetite and satiety (Lovshin & Drucker ibid, 2008). More recently, however, it has been associated with neurotrophic (Perry et al., J Pharmacol Exp Ther 300:958-66, 2002) and neuroprotective actions in both cellular and in vivo models of acute and chronic neurodegenerative conditions (Perry et al., J Pharmacol Exp There 302:881-8., 2002; Perry et al., J Neurosci Res 72:603-12, 2003), including stroke, AD, PD and Huntingtons disease (HD) (Li et al., PNAS 106:1285-90, 2009; Li et al., J Alz Dis 19:1205-19, 2010; Harkavyi et al., J Neuroinflamm 21:519, 2008; Martin et al., Diabetes 58:318-28, 2009; Bertilsson et al., J Neurosci Res 86:326-38, 2008).
Our target for drug design is the glucagon-like peptide-1 (GLP-1) receptor (R). GLP-1 is secreted from the gut in response to food and is a potent secretagogue that binds to the GLP-1R on pancreatic beta-cells to induce glucose-dependent insulin secretion, thereby controling plasma glucose levels. We are developing and evaluating long-acting GLP-1 analogues (collaborators: Drs. Egan, Hoffer, Lahiri, Sambamurti, Mattson). This research aided in the development of the peptide exendin-4 (Ex-4) into clinicall studies in type 2 diabetes. Novel chimeric peptides that combine the best features of GLP-1 and Ex-4 have also been designed and assessed in a variety preclinical models (Wang et al., J Clin Invest 99:2883-9, 1997, DeOre et al., J Gerontol A Biol Sci Med Sci 52:B245-9, 1997; Greig et al., Diabetologia 42:45-50, 1999; Szayna et al., Endocrinol 141:1936-41, 2000; Doyle et al., Endocrinol 142:4462-8, 2001; Doyle et al., Regul Pept 114:153-8, 2003; Doyle et al., Endocrine 27:1-9, 2005). We are characterizing the role of GLP-1R stimulation in the nervous system, as it is found present in brain and peripheral nerve. Our collaborative studies were the first to define that GLP-1 analogues possess neurotrophic properties and protect neuronal cells from a wide variety of lethal insults. Neuroprotection in cell culture translated to in vivo studies in classical rodent neurodegeneration models, which include AD, stroke, PD, HD, ALS, traumatic brain injury and peripheral neuropathy (Perry et al., Exp Neurol 203:293-301, 2007; Li et al., PNAS 106:1285-90, 2009; Li et al., J Alz Dis. 19:1205-19, 2010, Li et al., PLoS One 7:e32008, 2012; Salcedo et al., Br J Pharmacol 166:1586-99, 2012; Tweedie et al., Exp Neurol 239:170-82, 2013; Rachmany et al., Age 35:1621-36, 2013; Tweedie et al., Neurobiol Dis 54:1-11, 2013; Eakin et al., PLoS One 8:e82016, 2013; Greig et al., Alzheimers Dement. 10(S1):S62-7, 2014; Tweedie et al., Alzheimers Dement. 12:34-48, 2016). Current studies are focused on selecting agents for clinical assessment and defining mechanisms underpinning the neurotrophic/neuroprotective actions (Li et al., J Neurochem 113:621-31, 2010; Li et al., J Neurochem 135:1203-17, 2015). Additional research is focused on optimizing the translation of Ex-4 for the treatment of neurodegenerative disorders, and defining which specific disorders are most likely to have a clinical response - in this regard, the long-acting GLP-1 receptor agonist exendin-4 is in a current clinical trial in MCI/early AD (Collaborators: Drs. Kapogiannis, Egan, Mattson) and a trial in PD has just been completed (Lancet 2017; Collaborators: Drs. Foltynie, Athauda). Other clinical trials in different disorders are in current planning involving a sustained-release formulation of Ex-4 (PT302, Peptron, S. Korea) (Collaborators: Drs. Kim and Peptron colleagues; Hoffer; Chiang, Wang, Pick).
An alternate approach is to augment the levels of endogenous incretins available within the body by inhibiting their metabolism and, thereby, elevate their levels. In this regard, GLP-1 and the incretin, glucose-dependent insulinotropic polypeptide (GIP) are released following food ingestion and bind to their respective receptors on pancreatic beta cells to induce insulin secretion. Receptors for these endogenous peptides are found throughout the body, including the brain - which both GLP-1 and GIP can readily enter. The presence of the metabolizing serine protease enzyme, dipeptidyl peptidase-4 (DPP-4), results in the rapid clearance of both incretins. Current studies are assessing the utility of selective and well tolerated DPP-4 inhibitors in cellular and preclinical animal studies to elevate available GLP-1 and GIP levels in plasma and brain to a level at which they may provide neurotrophic/protective actions for the treatment of neurodegenerative disorders. Still other approaches being evaluated involve augmenting GIP-R and GLP-1R stimulation separately and together via other techniques - such as by the use of dual incretin mimetic peptides. Ongoing studies are in preclinical stages to both evaluate new drug development and drug repurposing towards neurological disorders currently lacking effective pharmacological treatment where this incretin strategy could prove highly beneficial (Collaborators: Drs. Wang, Hoffer, Tones, Zaleska, Mattison, Kim, DiMarchi).
2型糖尿病(T2DM)是老年人中的一种常见疾病,目前有可用的治疗方法,但效果并不令人满意。它是一种慢性、与年龄相关的退行性疾病,是老年人发病和死亡的主要原因,并且已达到流行的程度,全世界有超过 171 人受其困扰(Wild 等人,Diabetes Care 27:104753, 2004) 。 T2DM 的发展涉及多种风险因素(Gtz 等人,Cell Mol Life Sci 66:1321-5, 2009;Jin & Patti, Clin Sci (Lond) 116:99-111, 2009),包括遗传倾向、年龄、氧化应激、肥胖、饮食和缺乏身体活动。相比之下,这些相同的因素中的一些似乎与神经退行性疾病有关,例如阿尔茨海默病 (AD),这是最常见的痴呆形式(Reddy 等人,J Alzheimers Dis 16:763-74, 2009;Luchsinger & Gustafson ,《阿尔茨海默病杂志》16:693-704,2009)。有趣的是,许多精心设计的流行病学研究已经确定了这两种疾病以及帕金森病 (PD) 和中风等其他疾病之间的联系,将 T2DM 确定为发生各种慢性和急性神经退行性疾病的危险因素(Toro 等) ., J 阿尔茨海默病 16:687-91, 2009; Craft, Curr 阿尔茨海默病研究 4:147-52, 2007)。 胰腺和大脑都是对胰岛素高度敏感的组织。 T2DM 和 AD 以及其他神经系统疾病具有一些共同的临床和生化特征。其中特别重要的是胰岛素信号传导受损,表明致病机制重叠。因此,一种疾病的有效治疗策略可能对另一种疾病也具有潜在价值。
T2DM 最近的一种有效治疗策略是使用基于肠促胰岛素的疗法,该疗法基于内源性肽胰高血糖素样肽-1 (GLP-1) 的促胰岛素作用,并利用长效类似物 exendin-4 (Ex-4) ) (Lovshin & Drucker, Nat Rev Endocrinol 5:262-9, 2009; Drucker, Diabetes 62:3316-23, 2013)。 GLP-1 和受体 (R) 激动剂对 β 细胞的急性作用包括刺激葡萄糖依赖性胰岛素释放、增强胰岛素生物合成和刺激胰岛素基因转录。慢性作用包括刺激 β 细胞增殖、诱导胰岛新生和抑制 β 细胞凋亡,共同促进 β 细胞质量扩张和胰岛素信号传导正常化 (Drucker, Diabetes 64:317-26, 2015) 。据报道,Ex-4 很容易进入大脑(Kastin 等人,Int J Obes Relat Metab Disord 27:313-8, 2003),其中 GLP-1R 广泛表达(Perry & Greig, Trends Pharmacol Sci 24: 377-83, 2003)及其激活会导致多种生物反应。大脑中的 GLP-1R 刺激通常与食欲和饱腹感的调节有关(Lovshin & Drucker 同上,2008)。然而,最近,它在急性和慢性神经退行性疾病的细胞和体内模型中与神经营养作用(Perry 等人,J Pharmacol Exp Ther 300:958-66, 2002)和神经保护作用相关(Perry 等人,2002)。 ,J Pharmacol Exp There 302:881-8.,Perry 等人,J Neurosci Res; 72:603-12, 2003),包括中风、AD、PD 和亨廷顿病 (HD) (Li 等人,PNAS 106:1285-90, 2009 ;Li 等人,J Alz Dis 19:1205-19, 2010;Harkavyi 等人,J Neuroinflamm 21:519,Martin 等人,糖尿病 58:318-28,2009;Bertilsson 等人,J Neurosci Res 86:326-38,2008)。
我们的药物设计目标是胰高血糖素样肽-1 (GLP-1) 受体 (R)。 GLP-1 是一种有效的促分泌剂,可与胰腺 β 细胞上的 GLP-1R 结合,诱导葡萄糖依赖性胰岛素分泌,从而控制血浆葡萄糖水平。我们正在开发和评估长效 GLP-1 类似物(合作者:Egan、Hoffer、Lahiri、Sambamurti、Mattson 博士)。 这项研究有助于将肽 exendin-4 (Ex-4) 开发到 2 型糖尿病的临床研究中。结合了 GLP-1 和 Ex-4 最佳特征的新型嵌合肽也已在各种临床前模型中进行设计和评估(Wang 等人,J Clin Invest 99:2883-9, 1997,DeOre 等人,J Gerontol A Biol Sci Med Sci 52:B245-9,1997 Greig 等,糖尿病学; 42:45-50,1999;Szayna 等,Endocrinol 141:1936-41,2000;Doyle 等,Endocrinol 142:4462-8,2001;Doyle 等,Regul Pept 114:153-8,2003;多伊尔等人,内分泌; 27:1-9, 2005)。我们正在描述 GLP-1R 刺激在神经系统中的作用,因为它存在于大脑和周围神经中。我们的合作研究首次定义了 GLP-1 类似物具有神经营养特性并保护神经元细胞免受多种致命性损伤。细胞培养中的神经保护转化为经典啮齿动物神经变性模型的体内研究,包括 AD、中风、PD、HD、ALS、创伤性脑损伤和周围神经病变(Perry 等人,Exp Neurol 203:293-301, 2007;Li等人,PNAS 106:1285-90,2009;Li 等人,J Alz Dis。 19:1205-19,2010,Li 等人,PLoS One 7:e32008,2012;Salcedo 等人,Br J Pharmacol 166:1586-99,2012;Tweedie 等人,Exp Neurol 239:170-82, 2013;拉赫曼尼等人,年龄35:1621-36,2013;Tweedie 等人,Neurobiol Dis 54:1-11,2013;Eakin 等人,PLoS One 8:e82016,2013;Greig 等人,Alzheimers Dement。 -7,2014 年;Tweedie 等人,阿尔茨海默病。 12:34-48, 2016)。目前的研究重点是选择用于临床评估的药物和定义支持神经营养/神经保护作用的机制(Li et al., J Neurochem 113:621-31, 2010;Li et al., J Neurochem 135:1203-17, 2015) 。其他研究重点是优化 Ex-4 的翻译以治疗神经退行性疾病,并确定哪些特定疾病最有可能产生临床反应 - 在这方面,长效 GLP-1 受体激动剂 exendin-4 是目前正在进行一项针对 MCI/早期 AD 的临床试验(合作者:Kapogiannis 博士、Egan、Mattson 博士),一项针对 PD 的试验刚刚完成(Lancet 2017;合作者:Drs. Kapogiannis、Egan、Mattson)。福尔蒂尼,阿索达)。目前正在计划针对不同疾病的其他临床试验,涉及 Ex-4 的缓释制剂(PT302,Peptron,韩国)(合作者:Kim 博士和 Peptron 同事;Hoffer;Chiang、Wang、Pick)。
另一种方法是通过抑制新陈代谢来增加体内内源性肠促胰岛素的水平,从而提高其水平。在这方面,GLP-1 和肠促胰岛素、葡萄糖依赖性促胰岛素多肽 (GIP) 在食物摄入后释放,并与胰腺 β 细胞上各自的受体结合,诱导胰岛素分泌。这些内源性肽的受体遍布全身,包括大脑 - GLP-1 和 GIP 都可以轻松进入大脑。代谢丝氨酸蛋白酶二肽基肽酶 4 (DPP-4) 的存在导致两种肠降血糖素快速清除。目前的研究正在评估选择性和耐受性良好的 DPP-4 抑制剂在细胞和临床前动物研究中的效用,以将血浆和大脑中可用的 GLP-1 和 GIP 水平提高到可以为治疗以下疾病提供神经营养/保护作用的水平:神经退行性疾病。正在评估的其他方法还涉及通过其他技术单独或共同增强 GIP-R 和 GLP-1R 刺激 - 例如通过使用双肠降血糖素模拟肽。正在进行的研究处于临床前阶段,旨在评估新药开发和针对目前缺乏有效药物治疗的神经系统疾病的药物再利用,其中肠促胰素策略可能证明非常有益(合作者:Wang 博士、Hoffer、Tones、Zaleska、Mattison、Kim、DiMarchi) 。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel H. Greig其他文献
Rapid high-affinity transport of a chemotherapeutic amino acid across the blood-brain barrier.
化疗氨基酸快速高亲和力转运穿过血脑屏障。
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:11.2
- 作者:
Yoshiaki Takada;D. Vistica;Nigel H. Greig;David Purdon;Stanley I. Rapoport;Quentin R. Smith - 通讯作者:
Quentin R. Smith
Chemotherapy of brain metastases: current status.
脑转移化疗:现状。
- DOI:
- 发表时间:
1984 - 期刊:
- 影响因子:11.8
- 作者:
Nigel H. Greig - 通讯作者:
Nigel H. Greig
ブチリルコリンエステラーゼ阻害によるグレリンシグナルの活性化を介した中枢ムスカリンM1受容体機能の亢進
通过丁酰胆碱酯酶抑制激活生长素释放肽信号增强中枢毒蕈碱 M1 受体功能
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
吾郷由希夫;東野功典;国本寿美子;塚田信司;Nigel H. Greig;松田敏夫;橋本均 - 通讯作者:
橋本均
Attenuation of cocaine-induced locomotor activity by butyrylcholinesterase.
丁酰胆碱酯酶减弱可卡因诱导的运动活性。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:2.3
- 作者:
Gilberto N. Carmona;Charles W. Schindler;M. Shoaib;R. Jufer;Edward J. Cone;Steven R. Goldberg;Nigel H. Greig;Qian;D. Gorelick - 通讯作者:
D. Gorelick
Phensérine et posiphen pour le traitement d'affections neuro-psychiatriques et neurodégénératives
神经精神病学和神经退行性疾病情感特征的 Phensérine 和 Posiphen
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Jack T. Rogers;Rudolph E. Tanzi;Robert D. Moir;Nigel H. Greig;Avi L. Friedlich - 通讯作者:
Avi L. Friedlich
Nigel H. Greig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel H. Greig', 18)}}的其他基金
Pro-inflammatory cytokine lowering anti-inflammatory drugs
降低促炎细胞因子的抗炎药
- 批准号:
10688902 - 财政年份:
- 资助金额:
$ 98.14万 - 项目类别:
Neuroprotective role of GLP-1 receptor agonists
GLP-1 受体激动剂的神经保护作用
- 批准号:
7963934 - 财政年份:
- 资助金额:
$ 98.14万 - 项目类别:
Neuroprotective role of GLP-1 receptor agonists
GLP-1 受体激动剂的神经保护作用
- 批准号:
8148224 - 财政年份:
- 资助金额:
$ 98.14万 - 项目类别:
Neuroprotective role of GLP-1 receptor agonists
GLP-1 受体激动剂的神经保护作用
- 批准号:
8552374 - 财政年份:
- 资助金额:
$ 98.14万 - 项目类别:
相似国自然基金
TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
- 批准号:82220108016
- 批准年份:2022
- 资助金额:252 万元
- 项目类别:国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
- 批准号:81800806
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
- 批准号:81700824
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
- 批准号:81670269
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
老年人一体化编码的认知神经机制探索与干预研究:一种减少与老化相关的联结记忆缺陷的新途径
- 批准号:31470998
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
相似海外基金
The role of amphiregulin in mediating radiation cystitis in cancer survivors
双调蛋白在介导癌症幸存者放射性膀胱炎中的作用
- 批准号:
10636699 - 财政年份:2023
- 资助金额:
$ 98.14万 - 项目类别:
Regulation and function of aged hematopoietic stem cell (HSC) niche
衰老造血干细胞(HSC)生态位的调节和功能
- 批准号:
10723396 - 财政年份:2023
- 资助金额:
$ 98.14万 - 项目类别:
Redox stress resilience in aging skeletal muscle
衰老骨骼肌的氧化还原应激恢复能力
- 批准号:
10722970 - 财政年份:2023
- 资助金额:
$ 98.14万 - 项目类别:
The Association Between Aging, Inflammation, and Clinical Outcomes in Acute Respiratory Distress Syndrome
衰老、炎症与急性呼吸窘迫综合征临床结果之间的关联
- 批准号:
10722669 - 财政年份:2023
- 资助金额:
$ 98.14万 - 项目类别: