Active Membrane for Artificial Lung Applications
用于人工肺应用的活性膜
基本信息
- 批准号:9226544
- 负责人:
- 金额:$ 7.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAcuteAdult Respiratory Distress SyndromeAlveolarAmericanAmplifiersAreaArtificial MembranesBiocompatible MaterialsBloodBlood VesselsBlood capillariesBlood flowBlood gasCarbon DioxideCardiac Surgery proceduresCardiopulmonary BypassCardiovascular systemCessation of lifeChronic DiseaseChronic lung diseaseClinicalCoagulation ProcessComplexDevicesDiffusionDimensionsDoctor of PhilosophyElementsEvaluationExtracorporeal Membrane OxygenationFailureFrequenciesGasesGenerationsHeightHuman ResourcesIn VitroInflammatory ResponseLegal patentLiquid substanceLungLung TransplantationLung diseasesMeasuresMechanical ventilationMedicalMembraneMicrobubblesMicrofabricationModificationMolecularNatureNoble GasesOperative Surgical ProceduresOxygenOxygen Therapy CareOxygenatorsPatientsPerformancePolymersProcessPumpResearch PersonnelRespiratory physiologyRestShapesStreamSupport SystemSurfaceSurgeonSystemTechnologyTestingTimeVasodilator AgentsWaterWorkartificial lungbasebiomaterial compatibilitycapillarydesignheat exchangerinnovationkillingsmortalityportabilitypressurequantumrespiratoryscale upsimulationwater flow
项目摘要
Project Summary/Abstract
Lung disease annually kills more than 3 million people worldwide and 400,000 Americans (1 out of 6 deaths).
More than 235 million people worldwide and 35 million Americans are suffering from chronic lung disease.
Over 200,000 American people are suffering from ARDS (adult respiratory distress syndrome) with its mortality
rate of 25 - 40%. The traditional respiratory support for ARDS is mechanical ventilation to compensate
pulmonary deficiency and to support respiratory function. However, high airway pressure, high oxygen
concentration and over-distention can cause many complications, possibly resulting in multi-organ failure. The
medical support for the chronic disease can be oxygen therapy and pulmonary vasodilators but the long-term
treatment is ultimately lung transplantation. Artificial lung technologies, which are most commonly used for
cardiopulmonary bypass during open-heart surgery, have been developed and modified in order to provide
respiratory support with the acute as well as chronic lung disease patients. However, the current clinical use of
portable artificial lung is very limited to only extracorporeal membrane oxygenation (ECMO) in ICU, only
supporting the respiratory needs of patients at rest. Truly portable or long-term (> days) support systems are
not available with current technologies due to low gas exchange performance and biocompatibility issues.
A crucially important element in artificial lung is the intervened membrane where gas (O2 and CO2) exchange
occurs between gas and blood streams. The exchange mechanism is extremely slow diffusion across the
streams and membrane. This proposal aims to attack the fundamental mechanism in gas exchange (diffusion)
by using an innovative concept of active membrane (AM). The AM generates strong cross-streams, normal to
the membrane surface, thus agitates the laminar blood stream, and eventually make a quantum leap in gas
exchange. The cross-streams directly carry mass (O2-/CO2-dissolved entities) from and to the membrane
orders of magnitude faster than molecular diffusion, like a conveyer belt. As a result, this system would not
require such a high surface area as found in natural lungs, eventually eliminating many complex issues of
scale-up fabrication and integration encountered in natural lung mimicking. Furthermore, the decreased
surface area would minimize inflammatory response to the foreign surface and eventually clotting.
This project will focus on proving the proposed concept of AM via in vitro blood flow testing. Detailed task plans
are (1) design and optimize active membranes along with CFD (computational fluid dynamics) analysis; (2)
microfabricate optimized AMs and integrate them in flow loops; and (3) in vitro evaluate gas exchange
performance in the water/blood flow loops with hemocompatibility study. The primary innovation of this project
is to develop a new class of AMs to replace existing diffusion-based transport mechanism in artificial lung. The
significance of this work is to make a quantum leap in gas exchange that allows for truly portable (wearable),
highly efficient, artificial lungs.
项目概要/摘要
肺病每年导致全世界超过 300 万人和 40 万美国人死亡(六分之一的死亡)。
全球有超过 2.35 亿人、3500 万美国人患有慢性肺病。
超过 200,000 美国人患有 ARDS(成人呼吸窘迫综合症),死亡率很高
率为 25 - 40%。 ARDS 的传统呼吸支持是机械通气来补偿
肺虚并支持呼吸功能。但气道压力高、含氧量高
注意力集中和过度扩张会引起许多并发症,可能导致多器官衰竭。这
对慢性疾病的医疗支持可以是氧疗和肺血管扩张剂,但长期治疗
治疗最终是肺移植。人工肺技术,最常用于
心脏直视手术期间的体外循环已被开发和修改,以提供
为急性和慢性肺病患者提供呼吸支持。但目前临床使用
便携式人工肺非常局限于ICU中的体外膜肺氧合(ECMO),仅
支持患者休息时的呼吸需求。真正的便携式或长期(>天)支持系统是
由于气体交换性能低和生物相容性问题,目前的技术无法实现。
人工肺中至关重要的元件是气体(O2 和 CO2)交换的介入膜
发生在气体和血液之间。交换机制在整个系统中的扩散速度极其缓慢
流和膜。该提案旨在研究气体交换(扩散)的基本机制
通过使用活性膜(AM)的创新概念。 AM 产生强烈的交叉流,正常情况下
膜表面,从而搅动层流血流,最终使气体发生质的飞跃
交换。交叉流直接将质量(溶解有 O2/CO2 的实体)带入或带入膜
比分子扩散快几个数量级,就像传送带一样。结果,这个系统不会
需要像天然肺部一样高的表面积,最终消除了许多复杂的问题
自然肺模拟中遇到的放大制造和集成。此外,减少的
表面积将最大限度地减少对异物表面的炎症反应并最终减少凝血。
该项目将重点通过体外血流测试来证明所提出的 AM 概念。详细的任务计划
(1) 设计和优化活性膜以及CFD(计算流体动力学)分析; (2)
微加工优化的 AM 并将其集成到流动回路中; (3) 体外评估气体交换
通过血液相容性研究来评估水/血流回路的性能。本项目的主要创新点
是开发一类新型AM来取代人工肺中现有的基于扩散的运输机制。这
这项工作的意义在于在气体交换方面实现了巨大的飞跃,从而实现真正的便携式(可穿戴)、
高效的人工肺。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sung Kwon Cho其他文献
Sung Kwon Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Electrochemically Generated Inhaled Nitric Oxide (iNO) delivery via High Flow Nasal Cannula (HFNC)
通过高流量鼻插管 (HFNC) 输送电化学产生的吸入一氧化氮 (iNO)
- 批准号:
10637303 - 财政年份:2023
- 资助金额:
$ 7.35万 - 项目类别:
The Association Between Aging, Inflammation, and Clinical Outcomes in Acute Respiratory Distress Syndrome
衰老、炎症与急性呼吸窘迫综合征临床结果之间的关联
- 批准号:
10722669 - 财政年份:2023
- 资助金额:
$ 7.35万 - 项目类别:
Patient Ventilator Asynchrony in Critically Ill Children
危重儿童患者呼吸机异步
- 批准号:
10657157 - 财政年份:2023
- 资助金额:
$ 7.35万 - 项目类别:
1/2: PREcision VENTilation to attenuate Ventilation-Induced Lung Injury (PREVENT VILI)
1/2:精确通气以减轻通气引起的肺损伤(预防 VILI)
- 批准号:
10738958 - 财政年份:2023
- 资助金额:
$ 7.35万 - 项目类别:
Red blood cell ATP export and transfusion in sepsis
脓毒症中红细胞 ATP 输出和输血
- 批准号:
10584768 - 财政年份:2023
- 资助金额:
$ 7.35万 - 项目类别: