Autonomous system supporting patient-specific transfer and discharge decisions
支持患者特定转移和出院决策的自主系统
基本信息
- 批准号:9256278
- 负责人:
- 金额:$ 34.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibioticsAreaCessation of lifeChronicClinicalClinical Decision Support SystemsComputer softwareCuesDataData QualityData SetDatabasesDeteriorationEventFutureGeographyGoalsGoldHealthHealthcare SystemsHomeostasisHospital MortalityHourInpatientsIntensive Care UnitsInterventionKnowledgeLifeLiquid substanceMachine LearningMeasurementMedicalMethodsPatient CarePatient DischargePatient TransferPatientsPerformancePhasePhysiologyProcessROC CurveReceiver Operating CharacteristicsRecommendationResearchRiskSCAP2 geneSensitivity and SpecificitySeriesSiteSmall Business Innovation Research GrantSupport SystemSystemTechniquesTestingTimeTrainingTriageUpdateValidationWorkbasecostexperimental studyhigh standardimprovedmortalitynovelpatient populationsuccesssupport toolstooltrend
项目摘要
Significance: In this SBIR project, we propose to improve the utility of AutoTriage, a machine-learning based
clinical decision support (CDS) system, by integrating clinician intervention medical information into its
predictions. Despite identified needs for CDS systems in patient transfer and discharge decisions, existing
tools do not meet high standards for sensitivity and specificity. This is because current CDS methods are
unable to distinguish changes in patient health due to clinician intervention from those arising due to an internal
homeostatic mechanism. Thus, for example, existing tools may erroneously suggest discharge for a patient
currently undergoing a life-sustaining treatment. Research Question: Can machine learning principles be
used to create a classifier which incorporates signs of clinical intervention to inform transfer and discharge
decision support, ultimately leading to higher quality predictions? In addition, will such a tool be able to
maintain its performance when tested on a different patient population or one for which the data quality is much
poorer? Prior Work: We have developed AutoTriage, a machine learning-based CDSS for 12-hour mortality
prediction. On the publicly available MIMIC-III retrospective data set, this system attains an area under the
receiver operating characteristic curve (AUROC) of 0.88, which is superior to commonly used triage scores
MEWS (AUROC = 0.75), SOFA (0.71), and SAPS-II (0.72) on the same data set. Specific Aims: To integrate
clinician intervention information into existing AutoTriage software (Aim 1), and to test the robustness of this
modified tool to changes in patient population and data quality (Aim 2). Methods: We will create gold
standards for periods of clinician intervention, using chart events and keywords from clinician notes. Then, we
will train a binary classifier for identifying these periods and, ultimately, use the classifier to modify AutoTriage
scores. Robustness studies will be performed on the retrospective UC ReX and sparse MIMIC III databases.
Successful completion of Aim 1will be demonstrated if 75% of all hours of clinician intervention are correctly
classified, if the test-set area under the ROC curve improves by 5% over its current value, and if 30-day
readmission predictions are 10% more accurate for patients treated within the last hour. Aim 2 will be
completed if AutoTriage ROC area performance is within ± 0.10 of its original value for both UC ReX and
sparse MIMIC III sets. Future Directions: Following the proposed work, the AutoTriage system will be
deployed at the sites of our ongoing clinical implementations. During this study, we project that AutoTriage will
assess mortality risk for 25,000 ICU patients per year, helping clinicians more effectively allocate interventions
totaling $15 million.
意义:在这个SBIR项目中,我们建议改善Autotrage的实用性,这是一种基于机器的学习
临床决策支持(CD)系统,通过将临床干预医学信息整合到其
预测。尽管确定了患者转移和出院决策中CDS系统的需求,但现有
工具不符合敏感性和特异性的高标准。这是因为当前的CD方法是
由于临床干预措施而无法区分患者健康的变化与由于内部引起的患者的变化
稳态机制。例如,现有工具可能会错误地建议患者出院
目前正在接受维持生命的治疗。研究问题:机器学习原理可以
用于创建分类器,该分类器包含临床干预迹象以告知转移和出院
决策支持,最终导致更高质量的预测?此外,这样的工具将能够
在对不同的患者人群进行测试或数据质量大多的患者人群测试时保持其表现
贫穷?先前的工作:我们已经开发了自动化,这是一种基于机器学习的CDS,用于12小时死亡率
预言。在公开可用的模仿-III回顾性数据集中,该系统达到了
接收器工作特性曲线(AUROC)为0.88,优于常用的分类分数
在相同的数据集上,MeWS(AUROC = 0.75),沙发(0.71)和SAPS-II(0.72)。具体目标:集成
临床医生干预信息到现有的自动支架软件(AIM 1),并测试此功能的鲁棒性
修改了改变患者人群和数据质量的工具(AIM 2)。方法:我们将创建黄金
使用临床注释中的图表事件和关键字的临床干预期间标准。然后,我们
将训练二进制分类器以识别这些时期,并最终使用分类器修改自动分支
分数。鲁棒性研究将在回顾性UC REX和稀疏模拟III数据库上进行。
如果正确的所有临床干预措施中有75%的75%是正确完成AIM 1
分类,如果ROC曲线下的测试集面积比当前值提高5%,并且如果30天
对于过去一小时内治疗的患者,再入院预测的准确性要高10%。 AIM 2将是
如果自动架ROC面积性能在其原始值的±0.10以内,则完成。
稀疏模拟III集。未来的方向:遵循拟议的工作,自动架系统将是
部署在我们正在进行的临床实施的地点。在这项研究中,我们预测自动马车将
评估每年25,000名ICU患者的死亡率风险,帮助临床医生更有效地分配干预措施
总计1500万美元。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial.
- DOI:10.1136/bmjresp-2017-000234
- 发表时间:2017
- 期刊:
- 影响因子:4.1
- 作者:Shimabukuro DW;Barton CW;Feldman MD;Mataraso SJ;Das R
- 通讯作者:Das R
Machine learning landscapes and predictions for patient outcomes.
- DOI:10.1098/rsos.170175
- 发表时间:2017-07
- 期刊:
- 影响因子:3.5
- 作者:Das R;Wales DJ
- 通讯作者:Wales DJ
Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach.
- DOI:10.1136/bmjopen-2017-017199
- 发表时间:2017-09-15
- 期刊:
- 影响因子:2.9
- 作者:Desautels T;Das R;Calvert J;Trivedi M;Summers C;Wales DJ;Ercole A
- 通讯作者:Ercole A
Using Transfer Learning for Improved Mortality Prediction in a Data-Scarce Hospital Setting.
- DOI:10.1177/1178222617712994
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Desautels T;Calvert J;Hoffman J;Mao Q;Jay M;Fletcher G;Barton C;Chettipally U;Kerem Y;Das R
- 通讯作者:Das R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ritankar Das其他文献
Ritankar Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ritankar Das', 18)}}的其他基金
A computational approach to early sepsis detection
早期脓毒症检测的计算方法
- 批准号:
9557664 - 财政年份:2018
- 资助金额:
$ 34.78万 - 项目类别:
Early Identification of Acute Kidney Injury Using Deep Recurrent Neural Nets, Presented with Probable Etiology
使用深层循环神经网络早期识别急性肾损伤,并提出可能的病因
- 批准号:
9621546 - 财政年份:2018
- 资助金额:
$ 34.78万 - 项目类别:
相似国自然基金
跨区域视角下人类活动对农业抗生素排放的驱动机制及优化调控
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨区域视角下人类活动对农业抗生素排放的驱动机制及优化调控
- 批准号:52100209
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于污水流行病学的全国重点城市医疗用抗生素使用水平研究
- 批准号:41877508
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
典型城市区域水体中抗生素类药物迁移转化及其生态毒性研究
- 批准号:41773121
- 批准年份:2017
- 资助金额:68.0 万元
- 项目类别:面上项目
氟喹诺酮类抗生素受体蛋白的制备、分析方法的建立及区域环境水体的生态风险评估
- 批准号:41601552
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Derivation and Validation of the Pediatric Community-Acquired Pneumonia Severity (PedCAPS) Score
儿科社区获得性肺炎严重程度 (PedCAPS) 评分的推导和验证
- 批准号:
10587951 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Identifying Convergent Circuit Disruptions Across Genetically-Distinct Models of Autism
识别基因不同的自闭症模型中的收敛回路中断
- 批准号:
10638144 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Clinical decision support algorithm to optimize management of respiratory tract infection in children attending primary health facilities in Kilimanjaro Region, Tanzania
用于优化坦桑尼亚乞力马扎罗地区初级卫生机构儿童呼吸道感染管理的临床决策支持算法
- 批准号:
10734148 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Optimizing the synthesis of[18F]FTMP for commercial distribution
优化 [18F]FTMP 的合成以进行商业分销
- 批准号:
10601199 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Harnessing cooperativity to achieve high-precision in vivo measurements
利用协作性实现高精度体内测量
- 批准号:
10745250 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别: