Mechanisms for Stress-Induced Transcriptional Reprogramming via Anti-Adaptors
通过反适配器进行应激诱导转录重编程的机制
基本信息
- 批准号:9229317
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAnti-Bacterial AgentsAntibioticsBacteriaBacteria sigma factor KatF proteinBehaviorBindingBinding SitesBiochemistryBiocideBiological AssayCellsCommunitiesComplementComplexCryoelectron MicroscopyCuesDNA DamageDNA-Directed RNA PolymeraseDesiccationDevelopmentEnvironmentEscherichia coliGammaproteobacteriaGenesGenetic TranscriptionGenomeHumanIn VitroIndividualInfectionKnowledgeLaboratoriesMagnesiumMediatingMetalsMethodsMicrobial BiofilmsMicroscopyMolecular ConformationMolecular GeneticsMolecular StructureMolecular WeightNutrientOxidative StressPathway interactionsPhagocytosisPhasePhosphorylationPlantsPlayProcessProtein FamilyProteinsProteolysisRegulationRegulonReportingResearch PersonnelResolutionRoleSequence HomologySignal TransductionStarvationStressStructural ModelsStructureSystemTestingUbiquitinUp-RegulationVirulenceVirulence FactorsWorkX-Ray Crystallographyantimicrobialbiological adaptation to stressbiological systemsbiophysical techniquescombatin vivoinhibitor/antagonistinorganic phosphateinsightlogarithmmulticatalytic endopeptidase complexnovelparticlepathogenpromoterprotein protein interactionresponsestructural biologytoxic metal
项目摘要
PROJECT SUMMARY
The dissociable promoter recognition subunit RpoS (also known as σs) is the master transcriptional regulator of
the general stress response in γ-proteobacteria, and plays key roles in the virulence of many pathogens,
including human, plant and animal pathogens. Under certain conditions, such as at the transition from the
logarithmic to the stationary phase or in the presence of stress signals, RpoS redirects the core RNA
polymerase machinery to a subset of promoters to reprogram transcription. However, intracellular RpoS levels
are not steady – they are low in actively dividing cells, and substantially increased upon entering the stationary
phase or upon encountering stress. To achieve proper regulation, there is tight control over RpoS levels, with
the major point of regulation occurring at the level of RpoS proteolysis by the ATP-dependent ClpXP machine.
Our central focus is to understand the mechanisms of RpoS proteolysis by ClpXP as well as its regulation by
an emerging family of proteins collectively called anti-adaptors. In order to be degraded, RpoS is presented to
ClpXP by a unique, highly specific adaptor called RssB, which acts catalytically, without being degraded. In
turn, RssB itself is regulated by interactions with stress-specific anti-adaptors. Our work will focus on the
structure and function of three-anti-adaptors: IraD (induced by oxidative stress and DNA damage), IraM
(induced by magnesium starvation) and IraP (induced by phosphate starvation). These anti-adaptors share no
sequence homology, and only weak homology with protein of known structure, warranting a structural biology
effort aimed at deciphering the underlying mechanisms of RssB recognition. We will determine the structures
of IraD, IraM and IraP, both in isolation and bound to RssB using X-ray crystallography. This will allow us to
pinpoint, at atomic resolution, residues important for anti-adaptor/RssB interactions, and also regulation of the
anti-adaptors themselves by oligomerization. We will complement these structural studies with molecular
genetics, microscopy and functional assays for protein-protein interactions and RpoS degradation, which will
allow us to correlate in vitro behavior with in vivo observations. We will also determine structures of a RpoS-
RssB-ClpXP assembly using cutting-edge methods in electron cryo-microscopy, which will allow us to
understand the RpoS and RssB conformational dynamics at the core of this paradigmatic mode of regulated
proteolysis in bacteria. Overall, this work will not only bring fundamental, mechanistic insights, but will also
open the way to the development of novel antibacterials that could target ClpXP directly, or, adaptor/anti-
adaptor interfaces. The RpoS regulon has been reported to comprise up to 10% of the Escherichia coli
genome, and RpoS itself plays important roles in bacterial persistence, host-pathogen interactions and biofilm
formation, which underlie 80% of all infections.
项目摘要
可分离的启动子识别子单位RPO(也称为σs)是主转录调节器
γ-细菌的一般应激反应,并在许多病原体的病毒中起关键作用,
包括人,动植物病原体。在某些条件下,例如从
与固定相或应力信号存在的对数,RPO重定向核心RNA
聚合酶机械到启动子的子集进行重编程转录。但是,细胞内RPOS水平
不稳定 - 它们在积极分裂的细胞中很低,并且进入固定物时大幅增加
阶段或遇到压力。为了实现适当的调节,对RPOS水平有严格的控制,
由ATP依赖性CLPXP机器在RPOS蛋白水解水平上发生的主要调节点。
我们的核心重点是了解CLPXP的RPOS蛋白水解的机制以及其调节
一个新兴的蛋白质家族统称为抗自适应者。为了降级,将RPO提交给
CLPXP由一个称为RSSB的独特,高度特定的适配器,该适配器的作用,而不会降解。在
转弯,RSSB本身受到与应力特异性抗活体的相互作用的调节。我们的工作将集中在
三抗适应器的结构和功能:IRAD(由氧化应激和DNA损伤诱导),IRAM
(由镁饥饿诱导)和IRAP(由磷酸盐饥饿诱导)。这些反适应性人共享
序列同源性,仅具有已知结构蛋白质的弱同源性,警告结构生物学
旨在破译RSSB识别的基本机制的努力。我们将确定结构
IRAD,IRAM和IRAP的属于X射线晶体学,并与RSSB结合。这将使我们能够
在原子分辨率下,确定对抗自适应/RSSB相互作用保留很重要,并且还调节了
反适应器本身是通过低聚的。我们将通过分子完成这些结构研究
蛋白质 - 蛋白质相互作用和RPOS降解的遗传学,显微镜和功能测定
允许我们将体外行为与体内观察结果相关联。我们还将确定RPOS-的结构
RSSB-CLPXP组装使用电子冷冻微观镜中的尖端方法,这将使我们得以
了解这种调节模式的核心的RPO和RSSB构象动力学
细菌中的蛋白水解。总体而言,这项工作不仅会带来基本的机械见解,而且还将带来
为可以直接靶向CLPXP的新型抗菌物的发展开辟道路,或
适配器接口。据报道,RPOS常规的大肠杆菌占10%
基因组和RPO本身在细菌持久性,宿主 - 病原体相互作用和生物膜中起着重要作用
形成,这是所有感染的80%的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra M. Deaconescu其他文献
Starting Actin Filaments Anew - Adenomatous Polyposis Coli Is an Actin Nucleator
- DOI:
10.1016/j.bpj.2008.12.552 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Kyoko Okada;Alexandra M. Deaconescu;James B. Moseley;Zvonimir Dogic;Nikolaus Grigorieff;Bruce L. Goode - 通讯作者:
Bruce L. Goode
MFD Dynamically Regulates Transcription
- DOI:
10.1016/j.bpj.2017.11.1377 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Tung T. Le;Yi Yang;Chuang Tan;Margaret Suhanovsky;Robert M. Fulbright;James T. Inman;Ming Li;Jaeyoon Lee;Jeffrey W. Roberts;Alexandra M. Deaconescu;Michelle D. Wang - 通讯作者:
Michelle D. Wang
Alexandra M. Deaconescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra M. Deaconescu', 18)}}的其他基金
MECHANISMS AND MACROMOLECULAR INTERACTIONS UNDERLYING CELLULAR RESPONSES TO STRESS SIGNALS
细胞对应激信号反应的机制和大分子相互作用
- 批准号:
10570860 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
MECHANISMS AND MACROMOLECULAR INTERACTIONS UNDERLYING CELLULAR RESPONSES TO STRESS SIGNALS
细胞对应激信号反应的机制和大分子相互作用
- 批准号:
10330653 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
相似国自然基金
三种凤尾蕨属植物中吡咯生物碱及其抗菌和抗HCV病毒功能研究
- 批准号:82360689
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
基于乏氧增强型超声抗菌剂的细菌生物膜感染协同治疗研究
- 批准号:22375101
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于声动力的高效靶向抗菌剂开发及其用于幽门螺杆菌感染治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非典型I-型聚酮类抗菌剂NFAT-133的芳构化机理
- 批准号:32211530074
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
脑靶向新型反义抗菌剂递送系统的构建、评价及其递送机理研究
- 批准号:82202575
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Infection-Dependent Vulnerabilities of Gram-negative Bacterial Pathogens
革兰氏阴性细菌病原体的感染依赖性脆弱性
- 批准号:
10592676 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Combinatorial Neuroprotective Strategies for Preterm Brain Injury
早产儿脑损伤的组合神经保护策略
- 批准号:
10798705 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
- 批准号:
10742028 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
A Novel Small Molecule Therapeutic for Acute Graft Versus Host Disease
一种治疗急性移植物抗宿主病的新型小分子疗法
- 批准号:
10759657 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
The natural release of unusual peptidoglycan fragments drives persistent Lyme disease symptoms in susceptible hosts
异常肽聚糖片段的自然释放导致易感宿主持续出现莱姆病症状
- 批准号:
10736544 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别: