Development of a secure, cloud-based platform to improve record linkage & cross-agency collaboration for the public sector: using deep learning & scalable data integrations to combat the opioid crisis
开发安全的云平台以改善记录链接
基本信息
- 批准号:9622726
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract:
This SBIR Phase I proposal aims to fund research and development for a new, multitenant secure cloud-based
platform specifically tailored to provide local governmental agencies with tools to share datasets and link them
accurately, at high quality and low cost. The OpenLattice platform will focus on reducing drug overdoses and
making drug treatment less fractured. Individual-level datasets linked across medical providers and law
enforcement can support analyses of prescribing pathways and treatment trajectories that precede opioid
overdose, entry into treatment, disruption, and recovery. However, linking data at the individual level has
proven to be a difficult and resource-intensive endeavor compared to use of aggregate-level data, with issues
with deduplication plaguing many institutional databases. With 91 American deaths recorded daily from
opioid overdoses and systems of care spread across multiple institutions, the need for greater and high-quality
data sharing is undeniable. Our test partner for assessing the efficacy of proposed innovations is the Greater
Portland Addiction Collaborative (GPAC) in Maine, a partnership of hospitals, a police department, jail, detox
treatment centers and halfway houses already working together to reduce drug overdoses. This proposal aims
to demonstrate proof of concept for (i) scaling high-quality data integrations across multiple governmental
domains via a standardized entity data model, and (ii) improving record linkage using neural networks.
Firstly, OpenLattice is developing an open source ontology and integration scripts to standardize integration
of datasets into OpenLattice's database. As the individual customization requirements decline for onboarding
customers and integrating new data into the platform, costs will be greatly slashed, removing a significant
barrier to data solutions for smaller counties and cities across the country, who have historically faced custom
integrations, system updates, data storage fees and add-ons at high cost. The OpenLattice platform also
enables use of existing ETL tools and seamless integration with police dispatch systems, emergency medical
calls, healthcare records, and online prescription systems across partners who have committed to data sharing
and collaboration. Secondly, OpenLattice is developing a new, proprietary algorithm for record linkage that
employs a promising but as-yet commercially untested technique: a multilayer perceptron neural network,
more commonly known as deep learning. In pilot research, the linking algorithm has already demonstrated
success rivaling—and sometimes exceeding—current state of the art linking technologies. In Phase I,
OpenLattice will continue to improve ontologies, integration tools, and the deep learning neural network, and
test on publicly available datasets with dissimilar data types and formats, with manual confirmation of results.
When successful, these innovations will address critical barriers to improving clinical practice in treating
opioid addiction by enabling a more comprehensive continuum of care for those in treatment.
项目摘要/摘要:
该 SBIR 第一阶段提案旨在资助新的、多租户安全的基于云的研究和开发
专门为地方政府机构提供共享数据集和链接数据集的工具而定制的平台
OpenLattice 平台将专注于减少药物过量和药物过量。
减少跨医疗服务提供者和法律之间的个人层面数据集的断裂。
执法可以支持对阿片类药物之前的处方途径和治疗轨迹的分析
然而,个人层面的数据关联已成为可能。
与使用聚合级数据相比,事实证明这是一项困难且耗费资源的工作,存在问题
重复数据删除困扰着许多机构数据库,每天都会记录 91 例美国人的死亡事件。
阿片类药物过量和护理系统遍布多个机构,需要更多和高质量
数据共享是不可否认的,我们评估所提议的创新效果的测试合作伙伴是更大的。
缅因州波特兰成瘾合作组织 (GPAC),由医院、警察局、监狱、戒毒所组成的合作组织
治疗中心和中途之家已经共同努力减少药物过量。
展示 (i) 跨多个政府部门扩展高质量数据集成的概念验证
通过标准化实体数据模型来处理域,以及 (ii) 使用神经网络改进记录链接。
首先,OpenLattice正在开发开源本体和集成脚本以标准化集成
随着个人定制要求的下降,数据集进入 OpenLattice 的数据库。
客户并将新数据集成到平台中,成本将大幅削减,从而消除大量
全国较小的县和城市的数据解决方案面临障碍,这些县和城市历来面临定制化的问题
OpenLattice 平台的集成、系统更新、数据存储费用和附加组件的成本也很高。
能够使用现有的 ETL 工具并与警察调度系统、紧急医疗系统无缝集成
致力于数据共享的合作伙伴之间的通话、医疗记录和在线处方系统
其次,OpenLattice 正在开发一种新的、专有的记录链接算法。
采用了一种很有前途但尚未经过商业测试的技术:多层感知器神经网络,
通常被称为深度学习,在试点研究中,链接算法已经得到证明。
在第一阶段,它的成功可与当前最先进的连接技术相媲美,有时甚至超过。
OpenLattice 将继续改进本体、集成工具和深度学习神经网络,并且
对具有不同数据类型和格式的公开数据集进行测试,并手动确认结果。
一旦成功,这些创新将解决改善临床治疗实践的关键障碍
通过为接受治疗的人提供更全面的连续护理来减少阿片类药物成瘾。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joke Durnez其他文献
Joke Durnez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
隐私增强的智能网联汽车云控系统动态安全防护关键技术研究
- 批准号:62302033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
云环境下基于口令保护数据的安全加密算法研究
- 批准号:62302406
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
云支持的智能网联汽车跨场景安全协同控制
- 批准号:52302499
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针对APT攻击的云边端一体化安全防御技术
- 批准号:62302177
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向云原生的立体化容器安全监管关键技术研究
- 批准号:62302122
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Increasing the Value of Genomic Medicine through Private Pharmacogenomic Reporting
通过私人药物基因组报告增加基因组医学的价值
- 批准号:
10760119 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
TeleLine: Plug-n-Play Inline Respiratory Remote Data Acquisition System
TeleLine:即插即用内联呼吸远程数据采集系统
- 批准号:
10603124 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别: