mRNA Capping Enzyme
mRNA加帽酶
基本信息
- 批准号:9816287
- 负责人:
- 金额:$ 55.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAntibodiesBindingBiological AssayC-terminalCell Differentiation processCellsCharacteristicsChromatinChromatographyCollaborationsColorComplementComplexComputer AnalysisCoupledCouplingDefectDevelopmentDiseaseDistalDyesElongation FactorEngineeringEnzymesEventFoundationsFundingGene ExpressionGene Expression ProfileGenesGenetic TranscriptionGenomicsGoalsHIVImmobilizationIn VitroIndividualKineticsKnowledgeLabelLocationMalignant NeoplasmsMass Spectrum AnalysisMeasuresMediatingMedicalMessenger RNAMethodsMicroscopyModelingModificationMonitorMonoclonal AntibodiesNatureNuclear ExtractPatternPeptidesPeptidylprolyl IsomerasePharmaceutical PreparationsPhospho-Specific AntibodiesPhosphoric Monoester HydrolasesPhosphorylationPhosphorylation SitePhosphotransferasesPluripotent Stem CellsPopulationProcessProductivityProtein Binding DomainProteinsRNA Polymerase IIRNA ProcessingRNA analysisResolutionSeriesSpecificityStructureSystemTechniquesThinkingTimeTotal Internal Reflection FluorescentTranscriptTravelUntranslated RNAUpdateViralWorkYeastscell typechromatin immunoprecipitationexperimental studyimprovedin vivoinsightmRNA guanylyltransferasemillisecondpromoterresponsesingle moleculestoichiometrytat Proteintemporal measurementtherapy designtranscription factor
项目摘要
Project Summary. The long-term goal of this project is to understand how transcription by RNA
polymerase II (RNApII) is coupled to RNA processing and termination. This project previously developed a
model in which the C-terminal domain (CTD) of the RNApII subunit Rpb1 displays characteristic
phosphorylation patterns at different stages of the transcription cycle to promote binding of the appropriate
factors for co-transcriptional RNA processing. The fundamental knowledge generated by this project provides
significant insight into how the CTD phosphorylation cycle affects medically important processes such as the
stimulation of HIV transcription by the viral Tat protein and "pausing" of RNApII at developmentally regulated
genes. This project is necessary to better understand both the enzymes that mediate the changes in CTD
phosphorylation (kinases, phosphatases, etc.) as well as the proteins that recognize these patterns.
In the next funding period, three specific aims will be pursued, with a focus on measuring dynamics of
events during transcription. The first aim continues our work directly analyzing CTD phosphorylation sites by
mass spectrometry, avoiding pitfalls associated with the monoclonal antibodies used in most CTD studies. A
modified CTD (msCTD) was engineered to discriminate individual proximal and distal repeats by mass.
Recent improvements to peptide chromatography and computational analysis will improve our accuracy and
throughput. In vivo CTD phosphorylations will be analyzed in cells where various CTD modifying enzymes are
rapidly inactivated or depleted. Analysis of RNApII associated with specific CTD binding proteins or CTD
antibodies will also be performed to determine their binding specificities. The second aim exploits our recent
discovery that CTD cycle progresses as a function of time, rather than elongation distance. This realization
allowed us to create an in vitro system that reproduces the progression of CTD phosphorylations and
associated factors on elongation complexes, facilitating real time analysis of dynamics. This immobilized
template system will be combined with the msCTD from Aim 1 to produce a high-resolution time course of CTD
phosphorylation, probing the contributions of individual kinases and phosphatases. The third aim adapts the
immobilized template assay to single-molecule microscopy. We can visualize individual transcription events
with up to three fluorescently-labeled transcription factors, providing second to millisecond time resolution of
binding kinetics. We will measure the stoichiometries, order of binding, and cooperative interactions between
multiple CTD binding and elongation complex factors. Altogether, this project will make a unique contribution to
our understanding of gene expression by providing a time-resolved picture of events that complements
inherently static techniques such as structural studies or genomics.
项目摘要。该项目的长期目标是了解RNA转录的方式
聚合酶II(RNAPII)与RNA处理和终止耦合。这个项目以前开发了
RNAPII亚基RPB1的C末端域(CTD)显示特征的模型
在转录周期的不同阶段的磷酸化模式,以促进适当的结合
共转录RNA处理的因素。该项目产生的基本知识提供了
关于CTD磷酸化周期如何影响医学上重要的过程,例如
在发育调节的
基因。该项目是必要的,以更好地了解介导CTD变化的酶
磷酸化(激酶,磷酸酶等)以及识别这些模式的蛋白质。
在下一个资金期间,将追求三个具体目标,重点是衡量动态
转录期间的事件。第一个目标继续我们的工作直接分析CTD磷酸化位点
质谱法避免了与大多数CTD研究中使用的单克隆抗体相关的陷阱。一个
修改后的CTD(MSCTD)经过设计,以区分质量的个体近端和远端重复序列。
肽色谱法和计算分析的最新改进将提高我们的准确性和
吞吐量。体内CTD磷酸化将在各种CTD修饰酶的细胞中进行分析
迅速灭活或耗尽。与特定CTD结合蛋白或CTD相关的RNAPII分析
还将执行抗体以确定其结合特异性。第二个目标利用了我们最近的
发现CTD循环是随时间而不是伸长距离的函数进行的。这个实现
允许我们创建一个体外系统,该系统重现CTD磷酸化和
相关因素伸长复合物,促进动力学的实时分析。这固定了
模板系统将与AIM 1的MSCTD结合使用,以产生CTD的高分辨率时间过程
磷酸化,探测单个激酶和磷酸酶的贡献。第三个目标适应
固定的模板测定到单分子显微镜。我们可以可视化单个转录事件
最多三个荧光标记的转录因子,仅次于毫秒的时间分辨率
约束动力学。我们将衡量石化的图表,结合顺序和合作相互作用
多个CTD结合和伸长复杂因子。总之,这个项目将为
我们通过提供补充事件的时间分辨图片来理解基因表达
固有的静态技术,例如结构研究或基因组学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Buratowski其他文献
Stephen Buratowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Buratowski', 18)}}的其他基金
Single-molecule analysis of eukaryotic transcription activation
真核转录激活的单分子分析
- 批准号:
9884242 - 财政年份:2020
- 资助金额:
$ 55.94万 - 项目类别:
Single-molecule analysis of eukaryotic transcription activation
真核转录激活的单分子分析
- 批准号:
10544151 - 财政年份:2020
- 资助金额:
$ 55.94万 - 项目类别:
Single-molecule analysis of eukaryotic transcription activation
真核转录激活的单分子分析
- 批准号:
10328916 - 财政年份:2020
- 资助金额:
$ 55.94万 - 项目类别:
相似国自然基金
新细胞因子FAM19A4联合CTLA-4抗体在肿瘤治疗的功能和机制研究
- 批准号:32370967
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于吡啶盐的可裂解抗体-药物偶联方法研究
- 批准号:22307081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
- 批准号:32371262
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于淬灭抗体的重金属镉快速定量免疫分析
- 批准号:22306074
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TFAM条件性敲除重塑树突状细胞免疫代谢增强PD-1抗体抗肿瘤作用的机制研究
- 批准号:82303723
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
REGULATION OF BONE MARROW MESENCHYMAL STEM CELLS BY VCAM1
VCAM1 对骨髓间充质干细胞的调节
- 批准号:
10537391 - 财政年份:2023
- 资助金额:
$ 55.94万 - 项目类别:
KRAS inhibitors prime cancer cells for macrophage-mediated destruction
KRAS 抑制剂可引发巨噬细胞介导的破坏癌细胞
- 批准号:
10638364 - 财政年份:2023
- 资助金额:
$ 55.94万 - 项目类别:
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
- 批准号:
10639161 - 财政年份:2023
- 资助金额:
$ 55.94万 - 项目类别:
Mechanisms underlying diarrhea and gut inflammation mediated by Enterotoxigenic and Enteropathogenic E. coli
产肠毒素和致病性大肠杆菌介导的腹泻和肠道炎症的机制
- 批准号:
10674072 - 财政年份:2023
- 资助金额:
$ 55.94万 - 项目类别:
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
- 批准号:
10696749 - 财政年份:2023
- 资助金额:
$ 55.94万 - 项目类别: