SCAPE microscopy for high-speed in-vivo volumetric microscopy in behaving organisms
SCAPE 显微镜用于行为生物体的高速体内体积显微镜
基本信息
- 批准号:9328178
- 负责人:
- 金额:$ 50.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptionAdultApicalAreaBehaviorBehavioralBehavioral AssayBiomedical ResearchBrainBrain imagingCaenorhabditis elegansCellsCollaborationsComplexComputer softwareDataDendritesDevelopmentDrosophila genusDrosophila melanogasterEventGeneticGeometryHybridsImageImaging TechniquesIndividualInstitutesLaboratoriesLarvaLaser Scanning MicroscopyLasersLegal patentLightLightingMicroscopyMindModelingMotionMotorMusNatureNervous system structureNeurobiologyNeuronsNeurosciences ResearchNoiseOpticsOrganismPatternPenetrationPerformancePhotonsPlayPublishingResearch PersonnelResolutionRewardsRodentRoleSamplingScanningSignal TransductionSomatosensory CortexSpeedStructureSystemTask PerformancesTechniquesTestingThree-Dimensional ImagingTimeTissuesTranslatingTranslationsWalkingWorkZebrafishawakebasebehavioral responsebrain behaviorcellular imagingcostflygenetic manipulationhigh riskimaging approachimaging platformimprovedin vivoinformation processinginterestlensneural circuitneuroimagingnovel strategiesoptogeneticsphotonicsprototypepublic health relevancerelating to nervous systemsomatosensoryspatiotemporaltooltwo-photonuser-friendlywhole body imaging
项目摘要
DESCRIPTION (provided by applicant): Despite the growing availability of optical markers of neuronal activity, as well as genetic tools for optical manipulation, current optical microscopy techniques for imaging the intact brain at cellular resolution have approached their limits, particularly in terms of 3D volumetric imaging speeds. The brain and nervous system is inherently 3D, with cortical layers playing specific roles in information processing. Small organisms such as Drosophila melanogaster (fruit fly), Danio rerio (zebrafish) and Caenorhabditis elegans, have become valuable platforms for neuroscience research and genetic manipulation, and offer the chance to capture the entire nervous system of a complete, behaving organism. However, for both rodent brain and small organism microscopy, current techniques are limited to slow volumetric imaging rates, or single-plane acquisition. We recently developed a transformative new approach to high speed 3D microscopy called Swept, Confocally-Aligned Planar Excitation (SCAPE) microscopy. SCAPE was conceived as a way to dramatically improve volumetric imaging speeds, while maintaining a simple optical layout and image acquisition geometry. SCAPE is a hybrid between light-sheet microscopy and laser scanning confocal which overcomes the major speed barriers of both techniques. Recently published in Nature Photonics, SCAPE can image at volume rates 10-100 x faster than laser scanning microscopy or fast light-sheet imaging. We have demonstrated imaging of cellular-level structure and function in both the awake, behaving rodent brain and freely moving Drosophila melanogaster larvae at 10-20 volumes per second (VPS) over large fields of view. A further feature of SCAPE is its simple, single, stationary objective, permitting 3D imaging with no
motion at the sample, making it well suited for integration with pattered optogenetic manipulation of cells during high-speed 3D imaging. Having achieved `proof of concept' we now wish to develop SCAPE into a tool for routine use by neuroscientists working in both small organisms, for in-toto imaging of cellular activity and behavior, and in awake, behaving mouse brain. The former will be achieved through development and translation of an improved beta prototypes `1P-SCAPE' system, with development of user friendly acquisition software, data handling and analysis platforms, and ultimately its deployment and support for use in studies of somatosensory integration in adult and larval Drosophila. For mouse brain imaging, we propose to test the limits of SCAPE by exploring two- photon implementation (2P-SCAPE), which will afford deeper penetration imaging into scattering tissues such as the rodent brain.
描述(由适用提供):尽管神经元活性的光学标志物的可用性日益增加,以及用于光学操纵的遗传工具,但目前的光学显微镜技术用于成像细胞分辨率的完整大脑已经接近其限制,尤其是在3D体积成像速度方面。大脑和神经系统本质上是3D,皮层层在信息处理中起特定的作用。果蝇果蝇(果蝇),丹尼奥·雷里奥(斑马鱼)和秀丽隐杆线虫等小生物已经成为神经科学研究和遗传操纵的宝贵平台,并提供了捕捉完整的完整,表现有机体的整个神经系统的机会。但是,对于啮齿动物的大脑和小生物学显微镜,当前技术仅限于缓慢的体积成像率或单平面采集。我们最近开发了一种变革性的新方法,用于高速3D显微镜,称为SCHEPT,共同平衡的平面激发(SCAPE)显微镜。 Scape被认为是一种显着提高体积成像速度的方式,同时保持简单的光学布局和图像采集几何形状。 Scape是光片显微镜和激光扫描共焦之间的混合体,它克服了这两种技术的主要速度障碍。 Scape最近发表在《自然光子学》上,比激光扫描显微镜或快速灯页成像快于10-100 x的体积速率图像。我们已经证明了在清醒,表现啮齿动物的大脑和自由移动的果蝇杂物幼虫中的细胞水平结构和功能的成像,每秒10-20卷(VPS)在大型视野上。 Scape的另一个特征是其简单,单一的固定目标,允许3D成像无
样品的运动,使其非常适合在高速3D成像过程中与细胞的图案化光遗传操作集成。实现了“概念证明”后,我们现在希望将Scape开发为一种在两个小生物体中工作的神经科学家常规使用的工具,用于细胞活性和行为的体内成像,以及在清醒中表现出小鼠大脑。前者将通过开发和翻译改进的Beta原型“ 1P-Scape”系统,并通过开发用户友好的获取软件,数据处理和分析平台,并最终在成人和幼虫果蝇中的体感觉整合研究中的部署和支持。对于小鼠脑成像,我们建议通过探索两光子实现(2p-scape)来测试SCAPE的限制,这将提供更深入的渗透成像,以进入散射组织(例如啮齿动物脑)。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(8)
Neuromuscular basis of Drosophila larval rolling escape behavior.
- DOI:10.1073/pnas.2303641120
- 发表时间:2023-12-19
- 期刊:
- 影响因子:11.1
- 作者:Cooney, Patricia C.;Huang, Yuhan;Li, Wenze;Perera, Dulanjana M.;Hormigo, Richard;Tabachnik, Tanya;Godage, Isuru S.;Hillman, Elizabeth M. C.;Grueber, Wesley B.;Zarin, Aref A.
- 通讯作者:Zarin, Aref A.
The mesencephalic locomotor region recruits V2a reticulospinal neurons to drive forward locomotion in larval zebrafish.
- DOI:10.1038/s41593-023-01418-0
- 发表时间:2023-10
- 期刊:
- 影响因子:25
- 作者:Carbo-Tano, Martin;Lapoix, Mathilde;Jia, Xinyu;Thouvenin, Olivier;Pascucci, Marco;Auclair, Francois;Quan, Feng B.;Albadri, Shahad;Aguda, Vernie;Farouj, Younes;Hillman, Elizabeth M. C.;Portugues, Ruben;Del Bene, Filippo;Thiele, Tod R.;Dubuc, Rejean;Wyart, Claire
- 通讯作者:Wyart, Claire
Whole-Volume Clustering of Time Series Data from Zebrafish Brain Calcium Images via Mixture Modeling.
通过混合建模对斑马鱼脑钙图像的时间序列数据进行全体积聚类。
- DOI:10.1002/sam.11366
- 发表时间:2018
- 期刊:
- 影响因子:1.3
- 作者:Nguyen,HienD;Ullmann,JeremyFP;McLachlan,GeoffreyJ;Voleti,Venkatakaushik;Li,Wenze;Hillman,ElizabethMC;Reutens,DavidC;Janke,AndrewL
- 通讯作者:Janke,AndrewL
The spatial and temporal structure of neural activity across the fly brain.
- DOI:10.1038/s41467-023-41261-2
- 发表时间:2023-09-11
- 期刊:
- 影响因子:16.6
- 作者:Schaffer ES;Mishra N;Whiteway MR;Li W;Vancura MB;Freedman J;Patel KB;Voleti V;Paninski L;Hillman EMC;Abbott LF;Axel R
- 通讯作者:Axel R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth M. C. Hillman其他文献
Elizabeth M. C. Hillman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth M. C. Hillman', 18)}}的其他基金
Cell type atlasing of whole human brains using HOLiS: an optimized pipeline for staining, clearing, imaging, and analysis
使用 HOLiS 对整个人脑进行细胞类型图谱分析:用于染色、透明化、成像和分析的优化流程
- 批准号:
10377810 - 财政年份:2021
- 资助金额:
$ 50.48万 - 项目类别:
Characterizing long-range cortical and subcortical dynamics in relation to corticospinal output and motor control
表征与皮质脊髓输出和运动控制相关的长程皮质和皮质下动力学
- 批准号:
10224732 - 财政年份:2017
- 资助金额:
$ 50.48万 - 项目类别:
Characterizing long-range cortical and subcortical dynamics in relation to corticospinal output and motor control
表征与皮质脊髓输出和运动控制相关的长程皮质和皮质下动力学
- 批准号:
9983207 - 财政年份:2017
- 资助金额:
$ 50.48万 - 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
- 批准号:
8717740 - 财政年份:2011
- 资助金额:
$ 50.48万 - 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
- 批准号:
8320127 - 财政年份:2011
- 资助金额:
$ 50.48万 - 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
- 批准号:
8902277 - 财政年份:2011
- 资助金额:
$ 50.48万 - 项目类别:
ADVANCES IN OPTICS FOR BIOTECHNOLOGY, MEDICINE AND SURGERY CONFERENCE XII
第十二届生物技术、医学和外科光学会议的进展
- 批准号:
8062907 - 财政年份:2011
- 资助金额:
$ 50.48万 - 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
- 批准号:
8222238 - 财政年份:2011
- 资助金额:
$ 50.48万 - 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
- 批准号:
8514742 - 财政年份:2011
- 资助金额:
$ 50.48万 - 项目类别:
In-vivo optical imaging of neurovascular coupling and cerebral metabolism
神经血管耦合和脑代谢的体内光学成像
- 批准号:
7874281 - 财政年份:2008
- 资助金额:
$ 50.48万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 50.48万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 50.48万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 50.48万 - 项目类别:
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
- 批准号:
10600737 - 财政年份:2023
- 资助金额:
$ 50.48万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 50.48万 - 项目类别: