Anti-catabolic drug anchored cationic exosomes for cartilage targeting and repair
用于软骨靶向和修复的抗分解代谢药物锚定的阳离子外泌体
基本信息
- 批准号:9809789
- 负责人:
- 金额:$ 19.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AntibodiesArthralgiaArthritisBindingBiochemicalBiodistributionBiologicalBiological AssayBiological TransportCartilageCationsCellsChargeChondrocytesChronicClinicalCoculture TechniquesComplexCustomDegenerative polyarthritisDevelopmentDiffuseDoseDrug CarriersDrug Delivery SystemsDrug TransportElectrostaticsEncapsulatedEngineeringEscherichia coliExhibitsEyeFibroblastsGene ExpressionGenetic EngineeringGenetic MaterialsHistologyHybridsHydrophobicityInflammationInflammatoryInjectionsInjuryInterleukin-1Intervertebral disc structureIntra-Articular InjectionsJointsKineticsKneeLipid BilayersLipidsMediatingMeniscus structure of jointMesenchymal Stem CellsModelingOne-Step dentin bonding systemPenetrationPeptidesPharmaceutical PreparationsProcessPropertyProteinsRattusRecombinantsRoleSignal TransductionSynovial CellSynovial MembraneTailTherapeuticThickTimeTissuesToxic effectTranslatingTreatment Efficacyanakinrabasebiomaterial compatibilitybonecartilage degradationcartilage repaircell motilitycell typeclinical translationcytokinedensitydesignengineered exosomesexosomein vivoinhibitor/antagonistinjuredmicroCTpreservationreceptorregenerativerepairedresidencesuccessuptake
项目摘要
Project Summary
Osteoarthritis (OA) is associated with severe joint pain, inflammation, and chronic cartilage degeneration.
Mesenchymal stem cells (MSCs) derived exosomes are emerging as promising therapeutics for OA as they carry
proteins and genetic materials that induce regenerative processes like cell migration, proliferation, differentiation
and matrix synthesis. Their role in biological and transport crosstalk across multiple joint tissues and cell types,
however, remains unclear. Additionally, the negative charge of exosome lipid bilayer hinders their penetration
into the negatively charged cartilage. The high negative fixed charge density of cartilage offers a unique
opportunity to utilize electrostatic interactions to enhance intra-tissue transport, uptake, and retention of
exosomes by making them positively charged. We have designed an amphipathic cartilage penetrating cationic
peptide (CP) that can rapidly diffuse through full tissue thickness due to their optimal charge, be up-taken by
cells, and bind within for extended periods in both healthy and arthritic cartilage. This project will engineer
cartilage targeting MSC-exosomes anchored with CPs and with an anti-catabolic OA biologic, IL-1Ra (IL-1
inhibitor) in optimal concentrations. Currently, extensive genetic engineering approaches are used to produce
customized exosomes encapsulating biologics, which may compromise their intrinsic composition making their
clinical translation complex. The project will use a simple one-step synthesis of grafting CP and IL-1Ra on
exosome lipid bilayer. CP-exosomes can thus use cartilage as a drug depot and target cells thereby enhancing
the availability of optimally loaded IL-1Ra to its receptors while preserving their intrinsic therapeutic potential.
Aim 1 will engineer CP grafted MSC-exosome (CP-Exo) and characterize its intra-cartilage transport properties
in healthy and arthritic states. Their transport crosstalk and uptake across multiple cell types using cytokine
challenged chondrocyte and synovial cell co-cultures will be studied to understand whether their therapeutic
benefits arise from cartilage or synovium targeting or both. Aim 2 will synthesize recombinant lipid fused IL-1Ra
that will be anchored in different densities on exosome bilayer to form a hybrid vehicle, IL-1Ra-CP-Exo. Its
bioactivity will be evaluated using cytokine challenged cartilage-synovium explant co-cultures and compared with
free IL-1Ra and unmodified exosomes. Aim 3 will characterize joint kinetics, intra-cartilage uptake and
biodistribution of CP-Exo in healthy and injured rat knees, and bio efficacy of IL1-Ra-CP-Exo in suppressing
injury induced catabolic signaling will be evaluated using rat models of post traumatic OA. The project paves
way for utilizing the intrinsic therapeutic potential of exosomes for cartilage repair as well as for its customizable
development as a drug carrier allowing for adjustable intra-cartilage transport properties, easy drug anchoring
and controllable loading of a variety of pro-chondrogenic protein drugs and antibodies. The success of this project
can enable rapid clinical translation of exosomes as a cell-free, non-immunogenic platform for drug delivery to
cartilage and other negatively charged tissues like meniscus, intervertebral discs, eye etc.
项目摘要
骨关节炎(OA)与严重的关节疼痛,炎症和慢性软骨变性有关。
间充质干细胞(MSC)衍生的外泌体在OA携带时正在成为有希望的治疗剂
诱导细胞迁移,增殖,分化等再生过程的蛋白质和遗传材料
和基质合成。它们在多种关节组织和细胞类型的生物和运输串扰中的作用,
但是,尚不清楚。此外,外泌体脂质双层的负电荷阻碍了其穿透
进入负电荷的软骨。软骨的高负固定电荷密度可提供独特
利用静电相互作用来增强组织内运输,吸收和保留的机会
外泌体通过使它们积极地充电。我们设计了一种两亲的软骨穿透阳离子
肽(CP),由于其最佳电荷而可以通过完整的组织厚度迅速扩散,并通过
细胞,并在健康和关节炎软骨中长期结合。这个项目将设计
靶向MSC - 异位体的软骨,并用CPS锚定和抗代谢OA生物学IL-1RA(IL-1)(IL-1)
抑制剂)最佳浓度。目前,使用广泛的基因工程方法来生产
定制的外泌体封装生物制剂,这可能会损害其内在成分
临床翻译复合体。该项目将使用一个简单的一步合成CP和IL-1RA的合成
外泌体脂质双层。因此,CP诊断可以将软骨用作药物仓库,并可以增强目标细胞
最佳加载IL-1RA的受体可用性,同时保留其内在的治疗潜力。
AIM 1将设计CP移植的MSC-Exosos(CP-EXO),并表征其内部运输特性
在健康和关节炎状态。他们使用细胞因子在多种细胞类型的跨多种细胞类型的传输串扰和吸收
将研究受挑战的软骨细胞和滑膜细胞共培养
益处是由软骨或滑膜靶向产生的。 AIM 2将合成重组脂质融合IL-1RA
这将固定在外泌体双层上的不同密度中,形成混合动力汽车IL-1RA-CP-EXO。它是
将使用细胞因子挑战的软骨和养殖共培养评估生物活性,并将其与
游离IL-1RA和未修饰的外泌体。 AIM 3将表征关节动力学,体内摄取和
CP-EXO在健康和受伤的大鼠膝盖中的生物分布,以及IL1-RA-CP-EXO抑制的生物效能
损伤诱导的分解代谢信号将使用创伤后OA的大鼠模型进行评估。项目铺路
利用外泌体的内在治疗潜力进行软骨维修及其可定制的方法
作为药物载体的开发,允许可调节的内部运输特性,易于锚定药物
以及各种促疾病的蛋白质药物和抗体的可控加载。这个项目的成功
可以使外泌体的快速临床翻译作为无细胞的非免疫原性平台,用于递送药物
软骨和其他带负电的组织,例如弯月面,椎间盘,眼睛等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ambika Goel Bajpayee其他文献
Ambika Goel Bajpayee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ambika Goel Bajpayee', 18)}}的其他基金
Sustained Delivery of RhoA activator for Treatment of Intervertebral Disc Degeneration
持续递送 RhoA 激活剂治疗椎间盘退变
- 批准号:
10391978 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别:
Sustained Delivery of RhoA activator for Treatment of Intervertebral Disc Degeneration
持续递送 RhoA 激活剂治疗椎间盘退变
- 批准号:
10661491 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别:
Sustained Delivery of RhoA activator for Treatment of Intervertebral Disc Degeneration
持续递送 RhoA 激活剂治疗椎间盘退变
- 批准号:
10829719 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别:
Intra-cartilage depot delivery of electrically-charged IL-1RA for targeting osteoarthritis-associated inflammation and catabolism in multiple joint tissues
软骨内储库递送带电 IL-1RA,用于靶向多个关节组织中与骨关节炎相关的炎症和分解代谢
- 批准号:
10861426 - 财政年份:2020
- 资助金额:
$ 19.63万 - 项目类别:
Intra-cartilage depot delivery of electrically-charged IL-1RA for targeting osteoarthritis-associated inflammation and catabolism in multiple joint tissues
软骨内储库递送带电 IL-1RA,用于靶向多个关节组织中与骨关节炎相关的炎症和分解代谢
- 批准号:
10471429 - 财政年份:2020
- 资助金额:
$ 19.63万 - 项目类别:
Intra-cartilage depot delivery of electrically-charged IL-1RA for targeting osteoarthritis-associated inflammation and catabolism in multiple joint tissues
软骨内储库递送带电 IL-1RA,用于靶向多个关节组织中与骨关节炎相关的炎症和分解代谢
- 批准号:
9887607 - 财政年份:2020
- 资助金额:
$ 19.63万 - 项目类别:
Intra-cartilage depot delivery of electrically-charged IL-1RA for targeting osteoarthritis-associated inflammation and catabolism in multiple joint tissues
软骨内储库递送带电 IL-1RA,用于靶向多个关节组织中与骨关节炎相关的炎症和分解代谢
- 批准号:
10267666 - 财政年份:2020
- 资助金额:
$ 19.63万 - 项目类别:
Anti-catabolic drug anchored cationic exosomes for cartilage targeting and repair
用于软骨靶向和修复的抗分解代谢药物锚定的阳离子外泌体
- 批准号:
10176484 - 财政年份:2019
- 资助金额:
$ 19.63万 - 项目类别:
相似国自然基金
后棱蛇属Opisthotropis(爬行纲:蛇亚目:水游蛇科)物种系统学和生物地理学
- 批准号:32300370
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
兜兰属宽瓣亚属植物孤岛化种群扩散的根际关键限制因子
- 批准号:32360101
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
榕属环纹榕亚组的分类学研究
- 批准号:32300178
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于串联RBD蛋白和新型STING激动剂佐剂的β属冠状病毒亚单位广谱疫苗及其机制的研究
- 批准号:82202490
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
菊科蒿属莳萝蒿亚属的分类学研究
- 批准号:32270229
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
相似海外基金
BCCMA: Cartilage Repair Strategies to Alleviate Arthritis Pain (Care AP): Targeting Pattern-Recognition to Reduce Pain-Related Pathology in Osteoarthritis
BCCMA:缓解关节炎疼痛的软骨修复策略(Care AP):以模式识别为目标,减少骨关节炎中与疼痛相关的病理
- 批准号:
10620628 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别:
Environmental Influences Driving Autoimmunity and Autoimmune Disease in Tribal Members
环境影响导致部落成员发生自身免疫和自身免疫疾病
- 批准号:
10438444 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别:
Development of resident memory T cells in the synovium
滑膜中常驻记忆 T 细胞的发育
- 批准号:
10427963 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别:
Development of resident memory T cells in the synovium
滑膜中常驻记忆 T 细胞的发育
- 批准号:
10601115 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别:
Evaluation of mechanistic role of artemin/GFRα3 signaling in osteoarthritis pain
artemin/GFRα3 信号在骨关节炎疼痛中的机制作用评估
- 批准号:
10444070 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别: