Altered Mechanosensing by Oral Mucosal Fibroblasts Inhibits the Myofibroblast Transition
口腔粘膜成纤维细胞改变机械感应抑制肌成纤维细胞转变
基本信息
- 批准号:9809631
- 负责人:
- 金额:$ 21.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY/ABSTRACT
Unlike the dermis, the oral cavity is a site of privileged healing that does not significantly scar. Based on limited
data, oral mucosal wound healing has been suggested as a model for exploring mammalian regeneration. In
particular, oral mucosal fibroblasts exhibit unique characteristics when compared to dermal fibroblasts
suggesting that these cells are programmed to facilitate scarless healing. Many parallels have been drawn
between the oral mucosa and fetal skin which can also heal without scar formation. Oral mucosal fibroblasts
share several characteristics with fetal dermal fibroblasts which have been recognized as a key component of
scarless repair. Injured skin in the mammalian fetus heals scarlessly without myofibroblast involvement
suggesting that smaller cellular forces contribute to regenerative repair. In vivo and in vitro studies have shown
that fetal fibroblasts have unique characteristics that contribute to scarless healing including altered responses
to ECM rigidity and defective signaling pathways. However, it is unknown whether oral mucosal fibroblasts also
demonstrate this distinct phenotype and exhibit differential responses to environmental mechanical factors that
induce myofibroblast differentiation in postnatal or “adult” dermal fibroblasts which would represent a novel
avenue of research for uncovering new mechanisms that drive scarless healing. Therefore, we hypothesize
that oral mucosal fibroblasts have intrinsically altered mechanosensing mechanisms that limit their
ability to transition into myofibroblasts. We will test this hypothesis in the following Specific Aims: (1) test
the hypothesis that oral mucosal fibroblasts respond to physiologic biomechanical rigidities with an attenuated
contractile response and (2) identify molecular differences in oral mucosal fibroblasts that can be targeted to
reduce myofibroblast differentiation in adult dermal fibroblasts. We are taking an innovative approach by
utilizing the mechanical phenotype of oral mucosal fibroblasts as a model for understanding regenerative
repair. We will test our novel concept by using synthetic and biological substrates that mimic the different
mechanical stages of wound healing that progressively induce myofibroblast differentiation to isolate the
effects of physiologic rigidities. Overall, our goal is to delineate the underlying molecular and physical
mechanisms by which oral mucosal fibroblasts may differentially mechanosense ECM rigidity by quantifying
cellular biomechanical properties relevant to tissue repair. Furthermore, our research plan is designed to
uncover potential molecular targets for novel treatment strategies for dermal scarring and fibrosis in postnatal
wound healing. These studies are of particular clinical importance since no acceptable anti-fibrotic therapies
currently exist and dermal scarring and fibrosis costs billions of dollars of year in medical care and
management. In addition, the expected outcomes of our proposed studies are relevant to other fibrosis-related
pathologies as well as to the fields of tissue engineering and regenerative medicine.
项目摘要/摘要
与真皮不同,口腔是一个没有明显疤痕的特权康复场所。基于有限
数据是口服粘膜伤口愈合,作为探索哺乳动物再生的模型。在
与皮肤成纤维细胞相比,特别的口服粘膜成纤维细胞具有独特的特征
建议对这些细胞进行编程以促进无疤的愈合。许多相似之处已被绘制
在口腔粘膜和胎儿皮肤之间,也可以在不形成疤痕的情况下愈合。口服粘膜成纤维细胞
与胎儿皮肤成纤维细胞共享几个特征,这些特征已被认为是被认为是的关键组成部分
无疤的维修。哺乳动物胎儿受伤的皮肤无毛,无肌纤维细胞参与
表明较小的细胞力有助于再生修复。体内和体外研究表明
胎儿成纤维细胞具有独特的特征,可导致无疤的愈合,包括改变反应
到ECM刚度和有缺陷的信号通路。但是,尚不清楚口服粘膜成纤维细胞
证明这种独特的表型和对环境机械因素的差异反应
在产后或“成人”皮肤成纤维细胞中诱导肌纤维细胞分化,这将代表一种新颖
研究的研究途径,以揭示带来无疤痕愈合的新机制。因此,我们假设
口服粘膜成纤维细胞具有内在改变的机制,以限制其
过渡到肌纤维细胞的能力。我们将在以下特定目的中检验该假设:(1)测试
口服粘膜成纤维细胞对生理生物力学刚性有反应的假设
收缩反应和(2)确定可以针对的口服粘膜成纤维细胞的分子差异
减少成年皮肤成纤维细胞中的肌纤维细胞分化。我们正在采取一种创新的方法
利用口服粘膜成纤维细胞的机械表型作为理解再生的模型
维修。我们将通过使用模仿不同的合成和生物基底物来测试我们的新概念
伤口愈合的机械阶段,逐渐诱导肌纤维细胞分化以分离
身体僵化的影响。总体而言,我们的目标是描述基础分子和物理
口服粘膜成纤维细胞可能通过量化而对ECM刚度有所不同的机制
与组织修复有关的细胞生物力学特性。此外,我们的研究计划旨在
发现潜在的分子靶标,用于新的治疗策略,用于产后皮肤疤痕和纤维化
伤口愈合。由于没有可接受的抗纤维化疗法,因此这些研究特别重要
目前存在,皮肤疤痕和纤维化成本数十亿美元的医疗服务和
管理。此外,我们提出的研究的预期结果与其他纤维化有关
病理学以及组织工程和再生医学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Aron Parekh的其他基金
The Mechanical Phenotype of Fetal Fibroblasts as a Model for Regenerative Repair
胎儿成纤维细胞的机械表型作为再生修复模型
- 批准号:91845229184522
- 财政年份:2015
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
The Mechanical Phenotype of Fetal Fibroblasts as a Model for Regenerative Repair
胎儿成纤维细胞的机械表型作为再生修复模型
- 批准号:88937108893710
- 财政年份:2015
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
The Mechanical Phenotype of Fetal Fibroblasts as a Model for Regenerative Repair
胎儿成纤维细胞的机械表型作为再生修复模型
- 批准号:90244539024453
- 财政年份:2015
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
The Role of Basement Membrane Biomechanics in Cancer Cell Invasion
基底膜生物力学在癌细胞侵袭中的作用
- 批准号:87124078712407
- 财政年份:2010
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
The Role of Basement Membrane Biomechanics in Cancer Cell Invasion
基底膜生物力学在癌细胞侵袭中的作用
- 批准号:81350538135053
- 财政年份:2010
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
The Role of Basement Membrane Biomechanics in Cancer Cell Invasion
基底膜生物力学在癌细胞侵袭中的作用
- 批准号:83086348308634
- 财政年份:2010
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
The Role of Basement Membrane Biomechanics in Cancer Cell Invasion
基底膜生物力学在癌细胞侵袭中的作用
- 批准号:85392948539294
- 财政年份:2010
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
The Role of Basement Membrane Biomechanics in Cancer Cell Invasion
基底膜生物力学在癌细胞侵袭中的作用
- 批准号:79897437989743
- 财政年份:2010
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:1067979610679796
- 财政年份:2023
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
Peptide Discovery for Chondrogenesis
软骨形成肽的发现
- 批准号:1059454710594547
- 财政年份:2022
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
Mechanical Signaling mediated 3D chromatin remodeling in stem cell fate
机械信号介导干细胞命运中的 3D 染色质重塑
- 批准号:1064113410641134
- 财政年份:2022
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
Peptide Discovery for Chondrogenesis
软骨形成肽的发现
- 批准号:1045335110453351
- 财政年份:2022
- 资助金额:$ 21.25万$ 21.25万
- 项目类别:
Development of a Novel Bioinspired Pelvic Organ Prolapse Repair Graft
新型仿生盆腔器官脱垂修复移植物的开发
- 批准号:1067863510678635
- 财政年份:2022
- 资助金额:$ 21.25万$ 21.25万
- 项目类别: