Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
基本信息
- 批准号:9806796
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdultAffectAgeAlgorithmsAmericanApplications GrantsArtificial IntelligenceAwardAwarenessBlood VesselsCardiovascular DiseasesCardiovascular systemCaringCessation of lifeCharacteristicsClassificationClinicalClinical ResearchClinical TrialsCohort StudiesCost Effectiveness AnalysisCost utilityCosts and BenefitsCurrent Procedural Terminology CodesDataData AnalysesData SetDiagnosisDiseaseDisease OutcomeEarly DiagnosisEarly identificationEarly treatmentElectronic Health RecordEnrollmentEnsureEvaluationEventFoundationsFutureGoalsGrantHealthHealth Services ResearchHealthcareHealthcare SystemsImageInformaticsInterventionKnowledgeLeadLearningLimb structureLogistic RegressionsLongevityMachine LearningMedicalMedicareMedicineMentorshipModelingMorbidity - disease rateMyocardial InfarctionNewly DiagnosedNoiseNotificationOntologyOperative Surgical ProceduresPatient-Focused OutcomesPatientsPerformancePeripheral arterial diseasePhysiciansQuality of CareRandomizedRandomized Controlled Clinical TrialsRecommendationRecordsResearchResearch PersonnelResearch ProposalsResearch TrainingResourcesRiskRisk FactorsRisk stratificationScientistScreening procedureSensitivity and SpecificitySiteSpecialistStrokeStructureSurgeonSymptomsTechnologyTestingTextTimeTrainingTranslatingUnited States National Institutes of HealthUniversitiesVascular DiseasesWorkanalysis pipelinebasebiomedical informaticscare burdencareercareer developmentclinical data warehouseclinical implementationcohortcomputing resourcescostcost effectivecost outcomescost-effectiveness evaluationdeep learning algorithmdesigndisease diagnosisdisorder riskelectronic datahigh riskhuman subjecthuman very old age (85+)implementation scienceimprovedmachine learning algorithmmortalitynew technologynovelpost-doctoral trainingprematurepreventprofessorprospectiverandom forestrandomized trialrecurrent neural networkresearch studyscreeningtext searchingtooltreatment effect
项目摘要
ABSTRACT
The purpose of this award is to provide Dr. Elsie Ross, Assistant Professor of Surgery (Vascular Surgery) and
Medicine (Biomedical Informatics Research) at Stanford University, the support necessary to transition her
from a junior investigator into an independent surgeon-scientist in translational biomedical informatics. Dr.
Ross is a vascular surgeon with an advanced degree in health services research and postdoctoral training in
biomedical informatics. Her long-term goal is to combine her interdisciplinary training to develop and implement
machine learning tools that will enable the delivery of precise, high-value care to patients with cardiovascular
diseases. Her career development activities focus on advancing her ability to translate informatics discoveries
into viable clinical tools by 1) completing didactic courses to deepen and expand her knowledge of deep
learning algorithms, clinical trials and implementation science, 2) designing and conducting her first
independent human subjects clinical research study evaluating the performance of machine learning
technology, 3) implementing and evaluating the effects of an electronic health record (EHR)-based screening
tool to identify latent vascular disease, and 4) strengthening her previous training in cost-effectiveness analysis
to enable her future aim of evaluating the associated costs and utility of pro-active, automated disease
screening. The candidate has convened a mentorship team that includes Dr. Nigam Shah, a biomedical
informatics expert who combines machine learning, text-mining and medical ontologies to enable a learning
health care system; Dr. Kenneth Mahaffey a world-expert in cardiovascular clinical trials; and Dr. Paul
Heidenreich, an expert in implementation sciences with a focus on the use of EHR interventions to improve
care quality for cardiovascular patients and evaluating the cost-effectiveness of new technologies. The
research proposal builds on the candidate's prior work with using machine learning and EHR data to evaluate
and predict cardiovascular disease outcomes. The candidate now proposes to characterize the performance of
machine learning algorithms in identifying patients with peripheral artery disease (PAD) using EHR data (Aim
1), evaluate whether learned classification models perform better than traditional risk factors for identification of
undiagnosed PAD in a prospective patient cohort (Aim 2), and implement an EHR-based screening tool to
identify patients with undiagnosed PAD and evaluate the diagnosis and treatment effects (Aim 3). Completion
of the proposed research will result in a novel, EHR-based screening tool for identification of undiagnosed
vascular disease that can decrease PAD-related cardiovascular morbidity and mortality through earlier and
more aggressive medical management. This research will also form the basis for an R01 application before the
end of the award to conduct a multi-site randomized-controlled clinical trial to evaluate the impact of EHR-
based proactive PAD screening.
!
!
!
抽象的
该奖项的目的是为外科助理教授(血管外科)Elsie Ross 博士提供
斯坦福大学医学(生物医学信息学研究),为她的过渡提供必要的支持
从一名初级研究员转变为转化生物医学信息学领域的独立外科医生科学家。博士。
罗斯是一名血管外科医生,拥有健康服务研究和博士后培训的高级学位
生物医学信息学。她的长期目标是结合她的跨学科培训来开发和实施
机器学习工具将为心血管患者提供精确、高价值的护理
疾病。她的职业发展活动侧重于提高转化信息学发现的能力
通过 1) 完成教学课程来加深和扩展她的深层知识,将其转化为可行的临床工具
学习算法、临床试验和实施科学,2) 设计和实施她的第一个
评估机器学习性能的独立人类受试者临床研究
技术,3) 实施和评估基于电子健康记录 (EHR) 的筛查的效果
识别潜在血管疾病的工具,以及 4) 加强她之前在成本效益分析方面的培训
使她未来的目标是评估主动、自动化疾病的相关成本和效用
筛选。该候选人召集了一个导师团队,其中包括生物医学博士 Nigam Shah 博士。
信息学专家,结合机器学习、文本挖掘和医学本体论来实现学习
医疗保健系统; Kenneth Mahaffey 博士是心血管临床试验领域的世界专家;和保罗博士
Heidenreich,实施科学专家,专注于使用 EHR 干预措施来改善
心血管患者的护理质量并评估新技术的成本效益。这
研究提案建立在候选人之前使用机器学习和 EHR 数据进行评估的工作的基础上
并预测心血管疾病的结果。候选人现在提议描述
使用 EHR 数据识别外周动脉疾病 (PAD) 患者的机器学习算法 (Aim
1)、评估学习的分类模型是否比传统的风险因素识别表现更好
前瞻性患者队列中未诊断的 PAD(目标 2),并实施基于 EHR 的筛查工具
识别未确诊的 PAD 患者并评估诊断和治疗效果(目标 3)。完成
拟议的研究将产生一种新颖的、基于电子病历的筛查工具,用于识别未确诊的患者
血管疾病可以通过早期和早期预防来降低 PAD 相关的心血管发病率和死亡率
更积极的医疗管理。这项研究也将构成 R01 申请之前的基础
奖励结束后进行多中心随机对照临床试验,以评估 EHR 的影响
基于主动 PAD 筛查。
!
!
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elsie Gyang Ross其他文献
Elsie Gyang Ross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elsie Gyang Ross', 18)}}的其他基金
Artificial Intelligence for early Detection of Peripheral Artery Disease (AID-PAD)
用于早期检测外周动脉疾病的人工智能 (AID-PAD)
- 批准号:
10720501 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Using Artificial Intelligence to Enable Early Identification and Treatment of Peripheral Artery Disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
10907378 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
10472016 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
Using artificial intelligence to enable early identification and treatment of peripheral artery disease
利用人工智能实现外周动脉疾病的早期识别和治疗
- 批准号:
10246186 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Impact of Medicaid Prescription Cap Policies on Treatment Outcomes for Opioid Use Disorder: A National Mixed Methods Study
医疗补助处方上限政策对阿片类药物使用障碍治疗结果的影响:一项国家混合方法研究
- 批准号:
10637024 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
- 批准号:
10679189 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
The RaDIANT Health Systems Intervention for Equity in Kidney Transplantation
Radiant 卫生系统干预肾移植的公平性
- 批准号:
10681998 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别: