PNA Nanoparticles for Gene Editing In Vivo

用于体内基因编辑的 PNA 纳米颗粒

基本信息

  • 批准号:
    9804726
  • 负责人:
  • 金额:
    $ 42.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-05 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

There is substantial interest in gene editing as a potential means to treat human genetic disorders such as thalassemia and sickle cell disease. Much effort has been focused on targeted nucleases such as CRISPR/Cas9 and zinc-finger nucleases (ZFNs), based on work showing that site-directed DNA damage strongly promotes homologous recombination (HR). However, clinical application of targeted nucleases is challenged by the risk of off-target cleavage events in the genome. As an alternative, in work recently published in Nature Communications, the Ly, Saltzman, and Glazer labs have shown that γ-substituted triplex- forming peptide nucleic acids (PNAs) and donor DNAs delivered intravenously (IV) via poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) into a mouse model of human β-thalassemia produced almost complete amelioration of the disease, with clinically relevant β-globin gene correction frequencies in hematopoietic stem cells (HSCs) of up to 7%. The mice showed alleviation of anemia, improvement in RBC morphologies, and reversal of splenomegaly and extramedullary hematopoiesis, with extremely low off-target effects in the genome, a key advantage of this technology. The other key advantage is that the components can be synthesized chemically and formulated into nanoparticles for simple IV administration. However, synthesis of γPNAs is complicated and expensive, and they are not commercially available, limiting the ability of investigators to exploit this technology. In line with RFA-RM-18-024, “Expanding the Human Genome Engineering Repertoire”, this multi-PI proposal by Ly, Saltzman, and Glazer seeks to advance PNA/NP-based gene editing by simplifying and scaling up PNA synthesis, by incorporating next generation PNA chemistry to boost binding affinity, increase selectivity, and enhance potency, and by strategically exploiting cellular DNA repair pathways. The Specific Aims are: (1) To scale up PNA production and augment DNA binding, in order to expedite the translation of PNAs for therapeutic gene editing and enable widespread adoption of the technology. We will devise an enantioselective strategy for scaling up the production of monomers, and we will synthesize and test γPNAs with modified nucleobases to achieve improved DNA binding properties and to overcome the homopurine sequence restriction for triplex formation. (2) To develop strategies to manipulate DNA repair to enhance the efficiency of PNA-mediated gene editing, based on promising preliminary results with a novel DNA repair inhibitor. (3) To provide a robust platform of assays to evaluate the advancements from Aims 1-2 and to generalize this approach to multiple genes. We will continue to exploit facile mouse- and cell-based assays for correction of the human β-globin gene at the IVS2-654 thalassemia mutation. We expect this work to provide the basis for designing even more potent PNAs applicable to gene editing for many human genetic disorders.
基因编辑是治疗人类遗传疾病的潜在手段,例如 地中海贫血和镰状细胞疾病。大量精力集中在有针对性的核武器上,例如 CRISPR/CAS9和锌指核(ZFN),基于表明该位置定向DNA损伤的工作 强烈促进同源重组(HR)。但是,靶向核武器的临床应用是 受到基因组中脱靶裂解事件的风险的挑战。作为替代方案,最近在工作 LY,Saltzman和Glazer Labs发表在《自然通信》上,表明γ-取代的三重 形成肽核酸(PNA)和供体DNA,通过聚(乳酸 - 糖酸)静脉内传递(IV) 酸(PLGA)纳米颗粒(NP)进入人β-丘脑贫血的小鼠模型,几乎完整 疾病的改善,具有临床相关的β-珠蛋白基因校正频率 细胞(HSC)高达7%。小鼠表现出缓解贫血,RBC形态的改善和 脾肿大和外肺造血的逆转,脱靶效应极低 基因组,这项技术的关键优势。另一个关键优势是组件可以是 合成的合成,并配制成纳米颗粒,以进行简单的静脉注射。但是,合成 γPNA是复杂且昂贵的,并且它们无法商业上使用,从而限制了 调查人员利用这项技术。与RFA-RM-18-024一致,“扩展人类基因组 LY,Saltzman和Glazer的这项多PI的工程曲目”,试图推进基于PNA/NP 通过简化和扩展PNA合成,通过将下一代PNA化学结合到 提高结合亲和力,提高选择性并提高效力,并通过策略性利用细胞DNA 维修途径。具体目的是:(1)扩展PNA的产生和增强DNA结合,以便 加快对PNA进行治疗基因编辑的翻译,并可以采用宽度 技术。我们将制定一种对映射策略来扩展单体的生产,我们将 用改良的核碱基合成和测试γPNA,以提高DNA结合特性,并与 克服三重形成的同尿序列限制。 (2)制定操纵策略 基于有希望的初步结果,DNA修复以提高PNA介导的基因编辑的效率 带有新型的DNA修复抑制剂。 (3)提供一个强大的暗杀平台来评估进步 从目标1-2概括到多个基因。我们将继续利用便捷的鼠标 - 和 在IVS2-654 thalassyamia突变上校正人β-蛋白基因基因的基于细胞的测定。我们期望 这项工作为设计更多适用于许多人的基因编辑的潜在PNA提供了基础 遗传疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PETER M GLAZER其他文献

PETER M GLAZER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PETER M GLAZER', 18)}}的其他基金

PNA Nanoparticles for Gene Editing In Vivo
用于体内基因编辑的 PNA 纳米颗粒
  • 批准号:
    10198735
  • 财政年份:
    2019
  • 资助金额:
    $ 42.11万
  • 项目类别:
PNA Nanoparticles for Gene Editing In Vivo
用于体内基因编辑的 PNA 纳米颗粒
  • 批准号:
    10414795
  • 财政年份:
    2019
  • 资助金额:
    $ 42.11万
  • 项目类别:
Poly(amine-co-ester)s for Targeted Delivery In Vivo of Gene Editing Agents to Bone Marrow and Lung
用于将基因编辑剂体内靶向递送至骨髓和肺的聚(胺-共酯)
  • 批准号:
    10274829
  • 财政年份:
    2018
  • 资助金额:
    $ 42.11万
  • 项目类别:
Poly(amine-co-ester)s for Targeted Delivery In Vivo of Gene Editing Agents to Bone Marrow and Lung
用于将基因编辑剂体内靶向递送至骨髓和肺的聚(胺-共酯)
  • 批准号:
    10706300
  • 财政年份:
    2018
  • 资助金额:
    $ 42.11万
  • 项目类别:
Poly(amine-co-ester)s for targeted delivery of gene editing agents to treat cystic fibrosis in animal models: SCGE Disease Models Studies Supplement
用于靶向递送基因编辑剂以治疗动物模型中的囊性纤维化的聚(胺共酯):SCGE 疾病模型研究补充
  • 批准号:
    10619840
  • 财政年份:
    2018
  • 资助金额:
    $ 42.11万
  • 项目类别:
Novel DNA Repair Inhibitors for Cancer Therapy
用于癌症治疗的新型 DNA 修复抑制剂
  • 批准号:
    9388067
  • 财政年份:
    2017
  • 资助金额:
    $ 42.11万
  • 项目类别:
Novel DNA Repair Inhibitors for Cancer Therapy
用于癌症治疗的新型 DNA 修复抑制剂
  • 批准号:
    10204894
  • 财政年份:
    2017
  • 资助金额:
    $ 42.11万
  • 项目类别:
Novel DNA Repair Inhibitors for Cancer Therapy
用于癌症治疗的新型 DNA 修复抑制剂
  • 批准号:
    10456727
  • 财政年份:
    2017
  • 资助金额:
    $ 42.11万
  • 项目类别:
Novel DNA Repair Inhibitors for Cancer Therapy
用于癌症治疗的新型 DNA 修复抑制剂
  • 批准号:
    9981673
  • 财政年份:
    2017
  • 资助金额:
    $ 42.11万
  • 项目类别:
Yale Cancer Biology Training Grant
耶鲁大学癌症生物学培训补助金
  • 批准号:
    10170726
  • 财政年份:
    2016
  • 资助金额:
    $ 42.11万
  • 项目类别:

相似国自然基金

采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
  • 批准号:
    72303205
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
  • 批准号:
    62301339
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
  • 批准号:
    72304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

B7-H3 Targeted Ultrasound Molecular Imaging System for Early Breast Cancer and Metastatic Detection
B7-H3 用于早期乳腺癌和转移检测的靶向超声分子成像系统
  • 批准号:
    10584161
  • 财政年份:
    2023
  • 资助金额:
    $ 42.11万
  • 项目类别:
Small Molecule Probes for Fluorescence-guided Head and Neck Cancer Surgery
用于荧光引导头颈癌手术的小分子探针
  • 批准号:
    10644519
  • 财政年份:
    2023
  • 资助金额:
    $ 42.11万
  • 项目类别:
Aptamer tools for dissecting HIV-1 capsid function and identifying accessible, biologically relevant interaction surfaces.
用于剖析 HIV-1 衣壳功能并识别可访问的、生物学相关的相互作用表面的适体工具。
  • 批准号:
    10655852
  • 财政年份:
    2022
  • 资助金额:
    $ 42.11万
  • 项目类别:
Development of evolutionary technologies to reprogram protein-protein interactions
开发重新编程蛋白质-蛋白质相互作用的进化技术
  • 批准号:
    10536269
  • 财政年份:
    2022
  • 资助金额:
    $ 42.11万
  • 项目类别:
High-throughput antibody discovery directly from B cells using nanovial technology
使用纳米瓶技术直接从 B 细胞发现高通量抗体
  • 批准号:
    10324363
  • 财政年份:
    2021
  • 资助金额:
    $ 42.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了