Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
基本信息
- 批准号:9802783
- 负责人:
- 金额:$ 48.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAreaBiomedical EngineeringBrainCerebrumCessation of lifeCharacteristicsChildClinicalCodeCommunitiesDataData AnalysesData SetDatabasesDetectionElectrodesElectroencephalographyEnvironmentEpilepsyEventExcisionFreedomFrequenciesGoalsHemorrhageHigh Frequency OscillationHospitalsHourInvestigationLaboratoriesLanguageLesionMeningoencephalitisMethodsModernizationMonitorMorphologyMotivationMotorMotor CortexMulticenter StudiesNeocortexNeurosurgeonOperative Surgical ProceduresPathologicPatientsPatternPhysiologicalRecurrenceRefractoryReproducibilityResearchRiskSchemeSeizuresSiteSpatial DistributionStereotypingStructureSystemTechniquesTestingTimeTissuesTranslationsVisualWorkawakebaseclinical biomarkersclinical practiceclinically significantcomputational intelligencecomputerized toolscostneurotransmissionnovelpediatric patientsprognostic valueprospectivesignal processingtoolunsupervised learning
项目摘要
PROJECT SUMMARY
Neurosurgical therapy of refractory epilepsy requires accurate localization of seizure onset zone (SOZ). In clinical
practice, intracranial EEG (iEEG) is recorded in the epilepsy monitoring unit (EMU) over many days where
multiple seizures are recorded to provide information to localize the SOZ. The prolonged monitoring in the EMU
adds to the risk of complications and can include intracranial bleeding and potentially death. Recently, high
frequency oscillations (HFO) of iEEG between 80 to 500 Hz are highly valued as a promising clinical biomarker
for epilepsy. HFOs are believed to be clinically significant, and thus could be used for SOZ localization. However,
HFOs can also be recorded from normal and non-epileptic cerebral structures. When defined only by rate or
frequency, pathological HFOs are indistinguishable from physiological ones, which limit their application in
epilepsy pre-surgical planning. In this proposal, to the best of our knowledge, we show of a recurrent waveform
pattern that distinguishes pathological HFOs from physiological ones. In particular, we observed that the SOZ
generates repeatedly a set of stereotyped HFO waveforms whereas the HFOs from nonepileptic regions were
irregular in their waveform morphology. Based on these observations, using computational tools built on recent
advances in sparse coding and unsupervised machine learning techniques, we propose to detect these
stereotyped recurrent HFO waveform patterns directly from the continuous iEEG data of adult and pediatric
patients and test their prognostic value by correlating the spatial distribution of detected events to clinical findings
such as SOZ, resection zone and seizure freedom. We hypothesize that accurate detection of pathologic HFOs
in brief iEEG recordings can identify the SOZ and eliminate the necessity of prolonged EMU monitoring and
reduce the associated risks. With these motivations, in this project an interdisciplinary team composed of
biomedical engineers, epileptologists and neurosurgeons will work together to develop and test novel
computational tools to detect stereotyped HFOs and its subtypes in large iEEG datasets recorded with clinical
electrodes. Developed algorithms and iEEG data will be shared with the research community to contribute to the
reproducible research and help other research groups to develop novel methods. The results of this study will
be essential for achieving our group's long term goal of developing an online neural signal processing system
for the rapid and accurate identification of SOZ with brief invasive recording.
项目概要
难治性癫痫的神经外科治疗需要准确定位癫痫发作区(SOZ)。在临床上
在实践中,颅内脑电图 (iEEG) 会在癫痫监测单元 (EMU) 中记录很多天,其中
记录多次癫痫发作以提供定位 SOZ 的信息。动车组内的长时间监控
增加了并发症的风险,可能包括颅内出血和潜在的死亡。近期,高
80 至 500 Hz 之间的 iEEG 频率振荡 (HFO) 作为一种有前途的临床生物标志物受到高度重视
用于癫痫。 HFO 被认为具有临床意义,因此可用于 SOZ 定位。然而,
HFO 也可以从正常和非癫痫的大脑结构中记录。当仅由速率或
由于频率高,病理性 HFO 与生理性 HFO 无法区分,这限制了它们在
癫痫术前计划。在这个提案中,据我们所知,我们展示了一个循环波形
区分病理性 HFO 和生理性 HFO 的模式。特别是,我们观察到 SOZ
重复生成一组定型的 HFO 波形,而来自非癫痫区域的 HFO 则为
其波形形态不规则。基于这些观察,使用基于最近建立的计算工具
随着稀疏编码和无监督机器学习技术的进步,我们建议检测这些
直接来自成人和儿童连续 iEEG 数据的定型复发 HFO 波形模式
患者并通过将检测到的事件的空间分布与临床结果相关联来测试其预后价值
例如 SOZ、切除区和无癫痫发作。我们假设病理性 HFO 的准确检测
简而言之,iEEG 记录可以识别 SOZ 并消除长时间 EMU 监测的必要性
减少相关风险。出于这些动机,在这个项目中,一个由以下人员组成的跨学科团队
生物医学工程师、癫痫学家和神经外科医生将共同开发和测试新型药物
用于检测临床记录的大型 iEEG 数据集中定型 HFO 及其亚型的计算工具
电极。开发的算法和 iEEG 数据将与研究界共享,为
可重复的研究并帮助其他研究小组开发新方法。这项研究的结果将
对于实现我们小组开发在线神经信号处理系统的长期目标至关重要
通过简短的侵入性记录快速准确地识别 SOZ。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nuri Firat Ince其他文献
Nuri Firat Ince的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nuri Firat Ince', 18)}}的其他基金
Acute Modulation of Stereotyped High Frequency Oscillations with a Closed-Loop Brain Interchange System in Drug Resistant Epilepsy
耐药性癫痫中闭环脑交换系统对刻板高频振荡的急性调节
- 批准号:
10290984 - 财政年份:2021
- 资助金额:
$ 48.8万 - 项目类别:
Acute Modulation of Stereotyped High Frequency Oscillations with a Closed-Loop Brain Interchange System in Drug Resistant Epilepsy
耐药性癫痫中闭环脑交换系统对刻板高频振荡的急性调节
- 批准号:
10478109 - 财政年份:2021
- 资助金额:
$ 48.8万 - 项目类别:
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
10983614 - 财政年份:2019
- 资助金额:
$ 48.8万 - 项目类别:
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
10388243 - 财政年份:2019
- 资助金额:
$ 48.8万 - 项目类别:
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
9974350 - 财政年份:2019
- 资助金额:
$ 48.8万 - 项目类别:
Investigation of Stereotyped High-Frequency Oscillations with Computational Intelligence for the Prediction of Seizure Onset Zone in Epilepsy
利用计算智能研究刻板高频振荡以预测癫痫发作发作区
- 批准号:
10609889 - 财政年份:2019
- 资助金额:
$ 48.8万 - 项目类别:
相似国自然基金
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颜面缺损修复三维目标参照数据构建的区域权重非刚性配准算法研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 48.8万 - 项目类别:
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 48.8万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 48.8万 - 项目类别:
The perivascular space: A structural link between inadequate sleep, glymphatic dysfunction, and neurocognitive outcomes in adolescents
血管周围空间:青少年睡眠不足、类淋巴功能障碍和神经认知结果之间的结构联系
- 批准号:
10578466 - 财政年份:2023
- 资助金额:
$ 48.8万 - 项目类别:
Incorporating residential histories into assessment of cancer risk in a predominantly low-income and racially diverse population
将居住史纳入以低收入和种族多元化为主的人群的癌症风险评估中
- 批准号:
10735164 - 财政年份:2023
- 资助金额:
$ 48.8万 - 项目类别: