Molecular Mechanism of histone variant H2A.Z deposition by chromatin remodeling enzymes

染色质重塑酶沉积组蛋白变体 H2A.Z 的分子机制

基本信息

项目摘要

The long-term goal of our research is to investigate the molecular mechanisms of chromatin dynamics for understanding in molecular detail the fundamental questions of how transcription, DNA replication, and DNA repair take place within the context of highly compacted chromatin, and how mis-regulation of chromatin causes human diseases such as cancer. The overall objective of this proposed research is to determine how the deposition of the conserved histone variant H2A.Z is regulated by chromatin remodeling factors in mammalian cells. H2A.Z is deposited within nucleosomes that flank gene promoters, and plays essential roles in gene expression, genome stability, and proper embryonic stem cell (ESC) differentiation. Furthermore, mis- regulation of H2A.Z deposition is linked to cancer and cardiac hypertrophy. In yeast, SWR1, one of the well- characterized members of the SWR1/INO80 subfamily of remodeling enzymes, has a unique dimer exchange activity to remove H2A/H2B dimers from a nucleosome and replace them with H2A.Z/H2B dimers. The p400 and SRCAP chromatin remodeling enzymes are mammalian homologs of yeast SWR1 that are thought to be responsible for H2A.Z deposition. Interestingly, in lung cancer cells where H2A.Z is upregulated, suppression of p400 does not affect H2A.Z deposition while suppression of SRCAP leads to a decrease in H2A.Z deposition. Moreover, although p400 is required for maintenance of ESC identity such as self-renewal and pluripetency, H2A.Z is required for ESC differentiation, but not for maintenance of ESC identity. These observations suggest cell-type specific, distinct functions of p400 and SRCAP. Our overall strategy in this proposal is to exploit a powerful combination of biochemical and biophysical techniques, and genomics in ES cells to dissect the molecular mechanisms by which p400 and SRCAP regulate H2A.Z deposition and define the distinct biochemical and biological functions of these remodeling enzymes. This proposal has two specific aims. In Aim 1, we will dissect the mechanisms of H2A.Z deposition by the p400 and SRCAP remodeling complexes. The molecular mechanisms by which p400 and SRCAP catalyzes H2A.Z deposition are largely unknown, mainly due to the limited protein availability, as p400 and SRCAP form large multi-protein complexes. To address this, we have reconstituted the p400 and SRCAP complexes from individual, recombinant subunits using the Multibac baculovirus expression system. We will define the detailed kinetic rates and substrate specificities of the p400 and SRCAP complexes in the dimer exchange reactions. We will employ various dimer exchange assays including FRET-based assays. Furthermore, we will exploit state-of- the-art EM analysis of the p400 and SRCAP complexes to dissect the structural and functional relationship of these complexes. We will also explore the functions of p400 and SRCAP in mouse embryonic stem cells (ESCs). We will investigate how suppression of p400 and/or SRCAP alters the epigenetic landscape of H2A.Z and affects ESC identity and differentiation. In Aim 2, we will investigate how H2A.Z deposition is regulated by subunits of the p400 and SRCAP complexes and histone acetylations. We will define the role of different subunits of the p400 and SRCAP complexes in the dimer exchange reaction, focusing initially on the conserved RUBVL1/2 subunits. We will dissect how RUVBL1/2 govern the assemblies and functions of the p400 and SRCAP complexes using in vitro reconstitution system. We will also investigate how the ATPase activity of RUVLBL1/2 contributes to the dimer exchange activities of these complexes. In addition, the Tip60 histone acetyltransferase is a component of the p400 complex. We will investigate how the dimer exchange activity of p400 coordinates with the histone acetylation by Tip60. Furthermore, we recently identified a novel functional interaction between SWR1 and H3-K56Ac that regulates H2A.Z dynamics in yeast. We will test the hypothesis that the H3-K56Ac regulates the dimer exchange activities of p400 and SRCAP in mammalian cells.
我们研究的长期目标是研究染色质动力学的分子机制 在分子细节中了解转录,DNA复制和DNA的基本问题 维修发生在高度压实的染色质的背景下,以及染色质的错误调节 引起人类疾病,例如癌症。这项拟议研究的总体目标是确定 保守组蛋白变体H2A.Z的沉积受染色质重塑因子的调节 哺乳动物细胞。 H2A.Z沉积在基因启动子侧面的核小体中,并发挥重要作用 在基因表达,基因组稳定性和适当的胚胎干细胞(ESC)分化中。此外,错误 H2A.Z沉积的调节与癌症和心脏肥大有关。在酵母中,SWR1,其中之一 SWR1/Ino80的特征成员的重塑酶亚家族具有独特的二聚体交换 活性以从核小体中去除H2A/H2B二聚体,然后用H2A.Z/H2B二聚体代替它们。 P400 SRCAP染色质重塑酶是酵母SWR1的哺乳动物同源物,被认为是 负责H2A.Z沉积。有趣的是,在H2A.Z上调的肺癌细胞中,抑制 P400的of不影响H2A.Z的沉积,而抑制SRCAP会导致H2A.Z的降低 沉积。此外,尽管维持ESC身份(例如自我更新和)需要P400 ESC差异化是需要H2A.Z的多元性,但不是要维持ESC身份。这些 观察结果表明细胞类型的特异性,不同的P400和SRCAP功能。我们的整体策略 建议是利用生化和生物物理技术的强大组合以及ES中的基因组学 细胞剖析P400和SRCAP调节H2A.Z沉积并定义的分子机制 这些重塑酶的独特生化和生物学功能。该提议有两个特定的 目标。在AIM 1中,我们将通过P400和SRCAP重塑剖析H2A.Z沉积的机理 复合物。 P400和SRCAP催化H2A.Z沉积的分子机制在很大程度上是 未知,主要是由于蛋白质的可用性有限,因为P400和SRCAP形成了大型多蛋白 复合物。为了解决这个问题,我们从个人重新构成了P400和SRCAP复合物, 使用MultiBAC杆状病毒表达系统的重组亚基。我们将定义详细的动力学 二聚体交换反应中P400和SRCAP复合物的速率和底物特异性。我们将 采用各种二聚体交换测定法,包括基于FRET的测定法。此外,我们将利用 P400和SRCAP复合物的ART EM分析,以剖析剖析的结构和功能关系 这些复合物。我们还将探索小鼠胚胎干细胞中P400和SRCAP的功能 (ESC)。我们将研究P400和/或SRCAP的抑制如何改变H2A.Z的表观遗传景观 并影响ESC的身份和差异化。在AIM 2中,我们将调查H2A.Z沉积如何受到 P400和SRCAP复合物和组蛋白乙酰化的亚基。我们将定义不同的作用 二聚体交换反应中P400和SRCAP复合物的亚基,最初集中在 保守的rubvl1/2亚基。我们将剖析ruvbl1/2如何支配组件和功能 P400和SRCAP复合物使用体外重构系统。我们还将研究ATPase如何 RUVLBL1/2的活性有助于这些复合物的二聚体交换活动。此外,TIP60 组蛋白乙酰转移酶是P400复合物的组成部分。我们将调查二聚体交换方式 P400的活性与TIP60的组蛋白乙酰化坐标。此外,我们最近确定了一本小说 SWR1和H3-K56AC之间调节酵母中H2A.Z动力学的功能相互作用。我们将测试 假设H3-K56AC调节哺乳动物中P400和SRCAP的二聚体交换活动 细胞。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shinya Watanabe其他文献

Shinya Watanabe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shinya Watanabe', 18)}}的其他基金

Molecular Mechanism of histone variant H2A.Z deposition by chromatin remodeling enzymes
染色质重塑酶沉积组蛋白变体 H2A.Z 的分子机制
  • 批准号:
    10399479
  • 财政年份:
    2019
  • 资助金额:
    $ 35.18万
  • 项目类别:
Impact of Floating-Harbor syndrome mutations on chromatin remodeling by the SRCAP complex
浮港综合征突变对 SRCAP 复合体染色质重塑的影响
  • 批准号:
    9975861
  • 财政年份:
    2019
  • 资助金额:
    $ 35.18万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
  • 批准号:
    10680956
  • 财政年份:
    2023
  • 资助金额:
    $ 35.18万
  • 项目类别:
Inhibition or evasion of P-glycoprotein-mediated drug transport
抑制或逃避 P-糖蛋白介导的药物转运
  • 批准号:
    10568723
  • 财政年份:
    2023
  • 资助金额:
    $ 35.18万
  • 项目类别:
Mitochondrial proton leak and neonatal brain injury
线粒体质子泄漏与新生儿脑损伤
  • 批准号:
    10724518
  • 财政年份:
    2023
  • 资助金额:
    $ 35.18万
  • 项目类别:
The Role of CIC-6 in Vascular Control of Blood Pressure
CIC-6 在血管血压控制中的作用
  • 批准号:
    10877390
  • 财政年份:
    2023
  • 资助金额:
    $ 35.18万
  • 项目类别:
Molecular mechanisms of auxin response
生长素反应的分子机制
  • 批准号:
    10404759
  • 财政年份:
    2022
  • 资助金额:
    $ 35.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了