Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
基本信息
- 批准号:9805901
- 负责人:
- 金额:$ 79.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-22 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3T3 CellsAllelesAnimal TestingAnimalsAntibodiesBase PairingBindingC57BL/6 MouseCapsidCapsid ProteinsCellsClinical TrialsCollaborationsDNADNA Double Strand BreakDNA deliveryDNA sequencingDevelopmentEndocytosisEngineeringExposure toFlow CytometryFluorescenceGenetic DiseasesGenomeHematopoietic stem cellsHigh-Throughput DNA SequencingHigh-Throughput Nucleotide SequencingHomingIn VitroIndividualInjectionsKineticsLipidsLiverLuminescent MeasurementsMacaca mulattaMediatingMethodsMitoticModificationMusMutateNucleic AcidsOncogenicOutcomePatientsPoint MutationProcessProteinsRNAReagentReporterReporter GenesReportingRibonucleoproteinsRiskSafetySimian virus 40SiteSomatic CellSpecificitySystemTarget PopulationsTechnologyTissuesTransgenic MiceTropismViralaptamerbasecell typeclinical developmentclinical translationclinically relevantdesignembryonic stem cellgenome editingimmunogenicityimprovedin vivoinsertion/deletion mutationlarge scale productionlipid nanoparticleluminescencenanoparticle deliverynonhuman primatenovelnucleasenucleocytoplasmic transportparticleprogramsrepairedsomatic cell gene editingstoichiometrytooluptakewhole body imaging
项目摘要
Project Summary
New in vivo delivery technologies are urgently needed that enable selective genome editing of somatic
cells without the limitations of existing viral delivery systems or lipid nanoparticles. We propose to develop two
complementary strategies. First, by tethering Cas9 and base editor ribonucleoproteins (RNPs) to homing
moieties, such as antibodies or nucleic acid aptamers, we will develop delivery systems capable of editing a
specific population of target cells. As a second approach, we will engineer viral like particles (VLPs) to facilitate
efficient, tissue and cell specific delivery of genome editing agents. In the process, we will develop delivery
systems that are capable of targeting hematopoietic stem and progenitor cells (HSPCs), among other tissues.
To evaluate the efficiency and cell-type specificity of our proposed delivery methods, we will also generate a
reporter mouse that quantitatively and sensitively reports genome editing from base editors or programmable
nucleases without requiring DNA sequencing. In this proposal, we intend to:
(1) Design targeted ribonucleoprotein conjugates that selectively bind, enter, and edit target cells. Cell
and tissue selective Cas9 and base editor RNP delivery systems will be designed by tethering genome editing
proteins, directly or indirectly, to aptamer and antibody targeting moieties. The kinetics, magnitude, and
specificity of RNP endocytosis, endosomal escape, and nuclear transport will be defined and genome editing
efficiency and targeting specificity determined in vitro and in vivo.
(2) Engineer ribonucleoprotein nanoparticle delivery systems for cell and tissue targeted genome
editing. SV40 capsid proteins will be engineered to form viral like particles (VLPs) that are capable of
packaging ribonucleoproteins, rather than DNA. The stoichiometry of VLP-RNP delivery systems, which affords
optimal cell uptake, endosomal escape, and nuclear transport will be defined. Targeting specificity, as
determined by viral capsid tropism will be defined, and genome editing efficiency analyzed in vitro and in vivo.
(3) Develop a reporter mouse for facile assessment of targeted genome editing efficiency and cell- and
tissue-type specificity. We will optimize a reporter gene to independently detect base editing, end-joining, or
homology-directed repair. The reporter will be integrated into the Rosa26 safe harbor locus in C57BL/6 mouse
embryonic stem cells to generate transgenic mice. Genome editing outcomes will be evaluated by
fluorescence and luminescence measurements and correlated with high throughput DNA sequencing.
(4) Demonstrate safe and effective delivery of genome editing agents in non-human primates. The
delivery of genome editors to HSPCs and other target tissues will be assessed in rhesus macaques. Both
mammalian and non-mammalian systems will be evaluated to optimize large scale production of the genome
editor and related RNP delivery components. Targeting specificity and genome editing efficiency, as well as
safety will be analyzed in vivo. We anticipate identifying effective delivery systems suitable for clinical trials.
项目概要
迫切需要新的体内递送技术来实现体细胞的选择性基因组编辑
细胞不受现有病毒递送系统或脂质纳米颗粒的限制。我们建议开发两个
互补策略。首先,通过将 Cas9 和碱基编辑核糖核蛋白 (RNP) 束缚到归巢
部分,例如抗体或核酸适体,我们将开发能够编辑的递送系统
特定的靶细胞群。作为第二种方法,我们将设计病毒样颗粒(VLP)以促进
基因组编辑剂的高效、组织和细胞特异性递送。在此过程中,我们将开发交付
能够靶向造血干细胞和祖细胞(HSPC)等组织的系统。
为了评估我们提出的递送方法的效率和细胞类型特异性,我们还将生成
报告鼠标,可定量、灵敏地报告碱基编辑器或可编程的基因组编辑
核酸酶,无需 DNA 测序。在本提案中,我们打算:
(1) 设计选择性结合、进入和编辑靶细胞的靶向核糖核蛋白缀合物。细胞
组织选择性 Cas9 和碱基编辑器 RNP 传递系统将通过束缚基因组编辑来设计
蛋白质直接或间接地结合到适体和抗体靶向部分。动力学、幅度和
RNP 内吞作用、内体逃逸和核运输的特异性将被定义并进行基因组编辑
体外和体内确定的效率和靶向特异性。
(2) 设计用于细胞和组织靶向基因组的核糖核蛋白纳米粒子递送系统
编辑。 SV40衣壳蛋白将被设计成病毒样颗粒(VLP),能够
包装核糖核蛋白,而不是DNA。 VLP-RNP 递送系统的化学计量,可提供
将定义最佳细胞摄取、内体逃逸和核运输。目标特异性,如
将定义由病毒衣壳向性决定的基因组编辑效率,并在体外和体内分析基因组编辑效率。
(3) 开发一种报告小鼠,用于轻松评估靶向基因组编辑效率和细胞和
组织类型特异性。我们将优化报告基因以独立检测碱基编辑、末端连接或
同源定向修复。将报告基因整合到C57BL/6小鼠中的Rosa26安全港位点
胚胎干细胞产生转基因小鼠。基因组编辑结果将由以下机构评估
荧光和发光测量并与高通量 DNA 测序相关。
(4) 证明在非人类灵长类动物中安全有效地递送基因组编辑剂。这
将在恒河猴中评估基因组编辑器向 HSPC 和其他靶组织的传递。两个都
将评估哺乳动物和非哺乳动物系统,以优化基因组的大规模生产
编辑器和相关的 RNP 交付组件。靶向特异性和基因组编辑效率,以及
将在体内分析安全性。我们期望找到适合临床试验的有效输送系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elliot Chaikof其他文献
Elliot Chaikof的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elliot Chaikof', 18)}}的其他基金
Structure-Guided Design of Intestine-Selective AHR Agonists for Restoration of Gut Barrier Integrity in IBD
用于恢复 IBD 肠道屏障完整性的肠道选择性 AHR 激动剂的结构引导设计
- 批准号:
10627922 - 财政年份:2022
- 资助金额:
$ 79.68万 - 项目类别:
Structure-Guided Design of Intestine-Selective AHR Agonists for Restoration of Gut Barrier Integrity in IBD
用于恢复 IBD 肠道屏障完整性的肠道选择性 AHR 激动剂的结构引导设计
- 批准号:
10420534 - 财政年份:2022
- 资助金额:
$ 79.68万 - 项目类别:
Sulfated Poly-Amido-Saccharide (sulPAS) Biomaterials as Anticoagulants
作为抗凝剂的硫酸化聚酰胺糖 (sulPAS) 生物材料
- 批准号:
10649522 - 财政年份:2022
- 资助金额:
$ 79.68万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
10474980 - 财政年份:2019
- 资助金额:
$ 79.68万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
9795082 - 财政年份:2019
- 资助金额:
$ 79.68万 - 项目类别:
Clot-Targeted Antithrombotics for Venous Thromboprophylaxis
用于预防静脉血栓的凝块靶向抗血栓药物
- 批准号:
10229398 - 财政年份:2019
- 资助金额:
$ 79.68万 - 项目类别:
Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
- 批准号:
10664097 - 财政年份:2019
- 资助金额:
$ 79.68万 - 项目类别:
Delivery Technologies for In Vivo Genome Editing
体内基因组编辑的传递技术
- 批准号:
10222522 - 财政年份:2019
- 资助金额:
$ 79.68万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of adipocyte loss in laminopathy-induced lipodystrophy in mice and humans
小鼠和人类核纤层病诱导的脂肪营养不良中脂肪细胞损失的机制
- 批准号:
10447012 - 财政年份:2020
- 资助金额:
$ 79.68万 - 项目类别:
Mechanisms of adipocyte loss in laminopathy-induced lipodystrophy in mice and humans
小鼠和人类核纤层病诱导的脂肪营养不良中脂肪细胞损失的机制
- 批准号:
10029064 - 财政年份:2020
- 资助金额:
$ 79.68万 - 项目类别:
Mechanisms of adipocyte loss in laminopathy-induced lipodystrophy in mice and humans
小鼠和人类核纤层病诱导的脂肪营养不良中脂肪细胞损失的机制
- 批准号:
10212385 - 财政年份:2020
- 资助金额:
$ 79.68万 - 项目类别: