Regulatory mechanisms that control vesicle secretion at the endoplasmic reticulum
控制内质网囊泡分泌的调节机制
基本信息
- 批准号:9205237
- 负责人:
- 金额:$ 27.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelArchitectureAxonal TransportBindingBiochemicalBiochemistryBiogenesisBiological AssayCOPII-Coated VesiclesCaenorhabditis elegansCaliberCarrier ProteinsCellsChemicalsCoated vesicleComplexCryoelectron MicroscopyDefectDegenerative DisorderDevelopmentDiseaseElectronsEndoplasmic ReticulumEnsureEukaryotic CellFluorescenceGenesGerm CellsGoalsGolgi ApparatusGrowth and Development functionGuanosine Triphosphate PhosphohydrolasesHereditary Motor and Sensory NeuropathiesHereditary Spastic ParaplegiaHomeostasisHumanHuman DevelopmentImageImmune System DiseasesImmune System and Related DisordersImmunoelectron MicroscopyIn VitroLipidsLocationMaintenanceMalignant NeoplasmsMediatingMembraneMethodologyMicroscopyMitosisMolecularMonomeric GTP-Binding ProteinsMotor NeuronsMutationNerve DegenerationNeurodegenerative DisordersNeuronsOrganellesPathway interactionsPhosphorylationPoint MutationPolymersPopulationPositioning AttributePreventionProcessProteinsRecruitment ActivityRegulationResolutionRoentgen RaysRoleRouteScaffolding ProteinSet proteinSiteSpatial DistributionSpeedStem cellsStructural ModelsStructureTestingTimeTo specifyTransmembrane TransportTransport VesiclesVesicleVesicle Transport PathwayX-Ray Crystallographyanterograde transportbasecell growthcombatdefined contributiondepolymerizationdevelopmental diseaseelectron tomographyendoplasmic reticulum stressexperimental studyhuman tissueimprovedin vitro Assayin vivoinduced pluripotent stem cellinsightlive cell imagingnovel therapeutic interventionpolymerizationprotein complexprotein transportpublic health relevancereconstitutionrole modeltissue/cell culturetrafficking
项目摘要
DESCRIPTION (provided by applicant): The long-term goals of this proposal are to define the molecular mechanisms that regulate the spatial distribution of organelles in the early secretory pathway and to determine the importance of this architecture to normal membrane trafficking during cell growth and development. Most biosynthetic cargo molecules destined for secretion initiate their journey within specific subdomains of the endoplasmic reticulum (ER), known as ER exit sites. At these locations, COPII-coated vesicles are first generated, packaging cargoes for transport to ER- Golgi intermediate compartments (ERGIC), stable organelles that are juxtaposed to ER exit sites. The COPII coat is composed of two multimeric protein complexes, Sec23/24 and Sec13/31, and the small GTPase Sar1. Although these factors are sufficient to reconstitute vesicle budding from chemically defined membranes in vitro, additional proteins are required to promote COPII vesicle biogenesis and anterograde transport in cells. This proposal focuses on the role of TFG, a metazoan-specific protein required for the robust recruitment of COPII coat subunits to ER exit sites. Based on our preliminary results, we hypothesize that TFG forms a highly regulated meshwork at the ER/ERGIC interface that facilitates COPII coat stability and vesicle egress. Importantly, mutations in TFG have been implicated in progressive neurodegenerative disease, suggesting a role for COPII-mediated transport in maintaining neuron function. We propose a combination of in vivo and in vitro approaches to achieve our aims, taking advantage of assays developed in human cells and biochemical methodologies established to study the structure and function of early secretory pathway components. Using electron tomography, we recently defined the architecture of the early secretory pathway in germ cells derived from the model organism C. elegans. Our findings revealed the presence of an electron-dense meshwork, filled with molecules of TFG, which encompasses the region between ER exit sites and ERGIC membranes. We hypothesize that this meshwork functions in the regulation of COPII dynamics and helps to maintain the organization of the early secretory pathway. In a similar fashion, our preliminary studies in human cells have demonstrated a conserved role for TFG in controlling early secretory pathway architecture and function. Additionally, we have recently defined a structural model for TFG using cryo-electron microscopy and small angle X-ray scattering, which has led us to propose a testable model for the role of TFG at the interface between ER and ERGIC membranes. The specific aims of this proposal are to: 1) determine the structural basis for TFG assembly and disassembly at the ER/ERGIC interface, 2) define the contributions of TFG to COPII-mediated vesicle transport, and 3) define mechanisms by which TFG contributes to neuronal maintenance. Together, the experiments outlined in this proposal will provide fundamental new insights into how the organization of the early secretory pathway promotes the rapid anterograde transport of newly synthesized cargoes in COPII-coated vesicles, which is necessary for normal human development and neuronal homeostasis.
描述(由申请人提供):该提案的长期目标是定义调节器细胞器在早期分泌途径中的空间分布的分子机制,并确定该体系结构对细胞生长和发育过程中正常膜运输的重要性。大多数要进行分泌物的生物合成货物分子都在内质网(ER)的特定子域中启动其旅程,称为ER出口位点。在这些位置,首先生成了Copii涂层的囊泡,包装货物,用于运输到Ergolgi中间室(ERGIC),稳定的细胞器与ER出口位点并列。 COPII涂层由两个多聚体蛋白复合物,Sec23/24和Sec13/31,以及小的GTPase SAR1。尽管这些因素足以在体外从化学定义的膜从化学定义的膜中萌芽,但需要额外的蛋白质来促进细胞中的复合囊泡生物发生和顺行转运。该提案的重点是TFG的作用,TFG是一种可重大募集Copii外套亚基到ER出口部位所需的后生动物特异性蛋白质。基于我们的初步结果,我们假设TFG在ER/ERGIC界面上形成了高度调节的网状功能,可促进Copii外套的稳定性和囊泡出口。重要的是,TFG中的突变已与进行性神经退行性疾病有关,这表明COPII介导的转运在维持神经元功能中的作用。 我们提出了体内和体外方法的结合,以利用在人类细胞中开发的测定以及为研究早期分泌途径成分的结构和功能而建立的生化方法论的优势。我们最近使用电子层析成像来定义了来自模型有机体秀丽隐杆线虫的生殖细胞中早期分泌途径的结构。我们的发现揭示了充满了TFG分子的电子致密网状功能,其中涵盖了ER出口位点和ERGIC膜之间的区域。我们假设该网格工作在调节COPII动力学中起作用,并有助于维持早期分泌途径的组织。以类似的方式,我们在人类细胞中的初步研究表明,TFG在控制早期分泌途径结构和功能方面具有保守的作用。此外,我们最近使用冷冻电子显微镜和小角度X射线散射定义了TFG的结构模型,这使我们提出了一个可测试模型,以实现TFG在ER和ERGIC膜之间的界面中的作用。该提案的具体目的是:1)确定在ER/ERGIC接口处TFG组装和拆卸的结构基础,2)定义TFG对CopII介导的囊泡运输的贡献,3)定义了TFG对神经元维持的机制。总之,本提案中概述的实验将为早期分泌途径的组织如何促进新近合成的囊泡的快速顺序运输提供基本的新见解,这对于正常的人类发展和神经元稳态是必不可少的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anjon Audhya其他文献
Anjon Audhya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anjon Audhya', 18)}}的其他基金
Mechanisms Underlying Axonopathy in Hereditary Spastic Paraplegia
遗传性痉挛性截瘫轴突病的潜在机制
- 批准号:
10611493 - 财政年份:2022
- 资助金额:
$ 27.64万 - 项目类别:
Mechanisms Underlying Axonopathy in Hereditary Spastic Paraplegia
遗传性痉挛性截瘫轴突病的潜在机制
- 批准号:
10463959 - 财政年份:2022
- 资助金额:
$ 27.64万 - 项目类别:
Graduate Training in Molecular and Cellular Pharmacology
分子和细胞药理学研究生培训
- 批准号:
10175159 - 财政年份:2021
- 资助金额:
$ 27.64万 - 项目类别:
Graduate Training in Molecular and Cellular Pharmacology
分子和细胞药理学研究生培训
- 批准号:
10402849 - 财政年份:2021
- 资助金额:
$ 27.64万 - 项目类别:
Graduate Training in Molecular and Cellular Pharmacology
分子和细胞药理学研究生培训
- 批准号:
10612465 - 财政年份:2021
- 资助金额:
$ 27.64万 - 项目类别:
Molecular mechanisms that regulate vesicle formation and transport
调节囊泡形成和运输的分子机制
- 批准号:
10551323 - 财政年份:2020
- 资助金额:
$ 27.64万 - 项目类别:
Molecular mechanisms that regulate vesicle formation and transport
调节囊泡形成和运输的分子机制
- 批准号:
10333222 - 财政年份:2020
- 资助金额:
$ 27.64万 - 项目类别:
Molecular mechanisms that regulate vesicle formation and transport
调节囊泡形成和运输的分子机制
- 批准号:
10163556 - 财政年份:2020
- 资助金额:
$ 27.64万 - 项目类别:
Administrative Supplement: Molecular mechanisms that regulate vesicle formation and transport
行政补充:调节囊泡形成和运输的分子机制
- 批准号:
10796154 - 财政年份:2020
- 资助金额:
$ 27.64万 - 项目类别:
Molecular mechanisms that regulate vesicle formation and transport
调节囊泡形成和运输的分子机制
- 批准号:
10576500 - 财政年份:2020
- 资助金额:
$ 27.64万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 27.64万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 27.64万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 27.64万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 27.64万 - 项目类别:
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 27.64万 - 项目类别: