Open source diffusion MRI technology for brain cancer research
用于脑癌研究的开源扩散 MRI 技术
基本信息
- 批准号:9324191
- 负责人:
- 金额:$ 36.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-22 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAtlasesAwarenessBostonBrainBrain NeoplasmsBrain imagingClinicalClinical ResearchCommunitiesComputer softwareDataDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDocumentationEdemaEventFeedbackFiberFundingGermanyGoalsImageImageryInfiltrationInformaticsInternationalInternetIntervention StudiesLanguageLibrariesLicensingMalignant NeoplasmsMalignant neoplasm of brainMalignant neoplasm of prostateMeasurementMeasuresMedicalMethodsModelingModernizationMonitorNeuroanatomyNeuronsNeurosurgeonOperative Surgical ProceduresOutcomePatientsPerformancePositioning AttributeResearchResearch InfrastructureResearch PersonnelResource SharingRunningTechnologyTestingTimeTissuesTranslatingUnited States National Institutes of Healthanticancer researchbasecellular imagingclinical translationclinically relevantdata modelingdesignfile formatimprovedinsightinteroperabilitymodel developmentneurosurgerynovelopen sourcepreventpublic health relevanceresponsetechnology developmenttooltractographytumorusabilitywater diffusionwhite matter
项目摘要
DESCRIPTION (provided by applicant): Using measurements of water diffusion, dMRI can give unique insights into the microstructure and cellular orientation of tissues. In neurosurgical brain cancer research, dMRI is the only existing method that provides information about the trajectories of the white matter connections (fiber tracts). Neurosurgeons aim to preserve key fiber tracts when surgically removing tumors. dMRI also provides quantitative measurements that may aid in defining the borders of brain tumors, or in distinguishing tumor infiltration from edema. There is a growing awareness in the neurosurgery community that diffusion models must move beyond the current clinical standard of the diffusion tensor for better anatomical accuracy of fiber tracts. But several informatics challenges prevent advances in dMRI from easily reaching clinical cancer researchers: 1) advances in dMRI are not supported by commercial clinical software, 2) dMRI research software is not designed for clinical cancer settings, and 3) a lack of common file format standards prevents interoperability between dMRI software packages. Unlike other popular dMRI packages, the community software package 3D Slicer 4.0 (www.slicer.org) is uniquely positioned to enable novel clinical research in brain cancer because it was designed from the start for patient-specific cancer research. The 3D Slicer software package is an open-source community-based software platform, with 68629 total Slicer downloads around the world in 2013. While the current dMRI capabilities of Slicer are comparable to the technology available in commercial brain cancer neuron navigation software, the basic diffusion tensor model available in 3D Slicer is no longer state of the art for research.
Its drawbacks include anatomical inaccuracies in fiber tracts and non-specificity of DTI-derived measurements. We propose to develop the open-source software infrastructure and key clinically-relevant workflows necessary to move toward more advanced dMRI technologies for open-source cancer research using 3D Slicer. In addition, we propose to improve file format interoperability by developing a standalone standards- compliant library for dMRI tractography file formats, based on the newly proposed DICOM supplement for MR diffusion tractography storage. We will collaborate with local and international neurosurgical brain cancer researchers as well as our prostate cancer research collaborators, all of whom use 3D Slicer in their research. Our software dissemination will leverage the infrastructure in place for the community-based Slicer software. The expected outcome is a state-of-the-art suite of dMRI tools in the open-source software 3D Slicer and a standards-compliant tractography file format library. We expect that this open source dMRI technology will enable novel clinical research in brain cancer.
描述(由适用提供):使用水扩散的测量,DMRI可以为组织的微观结构和细胞方向提供独特的见解。在神经外科脑癌研究中,DMRI是唯一提供有关白质连接轨迹(纤维区)信息的现有方法。神经外科医生旨在在手术切除肿瘤时保持关键的纤维区域。 DMRI还提供了定量测量,可以有助于定义脑肿瘤的边界或区分肿瘤浸润与水肿。在神经外科社区中,人们越来越意识到,扩散模型必须超越扩散张量的当前临床标准,以提高纤维区域的解剖精度。但是,一些信息性挑战阻止了DMRI的进步轻松到达临床癌症研究人员:1)商业临床软件不支持DMRI的进步,2)DMRI研究软件不是为临床癌症设置而设计的,而3)缺乏常见的文件格式标准标准会导致DMRI软件包装之间的可介入性。与其他受欢迎的DMRI软件包不同,社区软件包3D Slicer 4.0(www.slicer.org)具有独特的位置,可以实现脑癌的新型临床研究,因为它是从一开始就针对患者特异性癌症研究而设计的。 3D SliCer软件包是一个开源社区的软件平台,2013年全球68629个Slicer下载量为68629。SLICER的当前DMRI功能与商业脑癌神经元导航软件中可用的技术相媲美,但基本的扩散tensor Tensor模型在3D SliCer中不再可用于研究。
它的缺点包括纤维区域的解剖不准确性以及DTI衍生测量的非特异性。我们建议开发开源软件基础架构和关键的临床与临床相关的工作流程,以迈向使用3D切片机进行开源癌症研究的更先进的DMRI技术。此外,我们建议通过开发符合DMRI Tractography文件格式的独立标准库来改善文件格式的互操作性,这是基于新提出的DICOM补充,用于MR扩散拖拉机存储。我们将与本地和国际神经外科脑癌研究人员以及我们的前列腺癌研究人员合作,他们在研究中都使用3D切片机。我们的软件传播将利用基于社区的切片机软件的基础架构。预期的结果是开源软件3D切片机中的DMRI工具的最先进套件和符合标准的拖拉图文件格式库。我们预计,这种开源DMRI技术将在脑癌方面进行新的临床研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lauren Jean O'Donnell其他文献
Lauren Jean O'Donnell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lauren Jean O'Donnell', 18)}}的其他基金
Harmonizing multi-site diffusion MRI acquisitions for neuroscientific analysis across ages and brain disorders
协调多部位扩散 MRI 采集,用于跨年龄和脑部疾病的神经科学分析
- 批准号:
10334502 - 财政年份:2019
- 资助金额:
$ 36.83万 - 项目类别:
Harmonizing multi-site diffusion MRI acquisitions for neuroscientific analysis across ages and brain disorders
协调多部位扩散 MRI 采集,用于跨年龄和脑部疾病的神经科学分析
- 批准号:
9884823 - 财政年份:2019
- 资助金额:
$ 36.83万 - 项目类别:
Harmonizing multi-site diffusion MRI acquisitions for neuroscientific analysis across ages and brain disorders
协调多部位扩散 MRI 采集,用于跨年龄和脑部疾病的神经科学分析
- 批准号:
10553703 - 财政年份:2019
- 资助金额:
$ 36.83万 - 项目类别:
Novel diffusion MRI analysis for detection of mild traumatic brain injury
用于检测轻度创伤性脑损伤的新型扩散 MRI 分析
- 批准号:
8968514 - 财政年份:2015
- 资助金额:
$ 36.83万 - 项目类别:
Open source diffusion MRI technology for brain cancer research
用于脑癌研究的开源扩散 MRI 技术
- 批准号:
8971083 - 财政年份:2015
- 资助金额:
$ 36.83万 - 项目类别:
Open source diffusion MRI technology for brain cancer research
用于脑癌研究的开源扩散 MRI 技术
- 批准号:
9147560 - 财政年份:2015
- 资助金额:
$ 36.83万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 36.83万 - 项目类别:
Upper airway collapsibility, loop gain and arousal threshold: an integrative therapeutic approach to obstructive sleep apnea
上气道塌陷、循环增益和唤醒阈值:阻塞性睡眠呼吸暂停的综合治疗方法
- 批准号:
10859275 - 财政年份:2023
- 资助金额:
$ 36.83万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 36.83万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 36.83万 - 项目类别:
Quantitative imaging of choroid plexus function and neurofluid circulation in Alzheimer's Disease Related Dementia
阿尔茨海默病相关痴呆症脉络丛功能和神经液循环的定量成像
- 批准号:
10718346 - 财政年份:2023
- 资助金额:
$ 36.83万 - 项目类别: