Smart and self-reporting clinical nano carriers for drug delivery
用于药物输送的智能和自我报告的临床纳米载体
基本信息
- 批准号:9302146
- 负责人:
- 金额:$ 71.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAnimal ModelBiological AvailabilityCessation of lifeChelating AgentsClinicClinicalComplementContrast MediaCoupledDataDextransDiseaseDoseDrug Delivery SystemsDrug ExposureDrug ModelingsDrug MonitoringElectrostaticsEnsureEnvironmentFailureFormulationFutureGadoliniumHeat-Shock Proteins 90HydrophobicityImageInjectableIronKineticsLabelLinkLiverMagnetic Resonance ImagingMalignant NeoplasmsMediatingMethodsModelingMolecular WeightMonitorMusPatient Self-ReportPatientsPeptidesPermeabilityPharmaceutical PreparationsPharmacotherapyPhysiciansPositron-Emission TomographyPropertyPublic HealthQuality of lifeRadiolabeledReportingSignal TransductionSystemSystemic TherapyTestingTherapeutic IndexTimeToxic effectTranslatingTreatment EfficacyTumor TissueValidationWorkbaseblindcancer therapyclinical translationcontrolled releasecostcytotoxicdosagedrug developmentdrug efficacyexperimental studyimaging modalityimprovedin vivoindividual patientinhibitor/antagonistinsightiron oxidekillingsnanocarriernanoparticleneoplastic cellnovel strategiesparticlepredicting responseresponsesystemic toxicitytargeted treatmenttheranosticstherapy developmenttreatment strategytumortumor microenvironment
项目摘要
Abstract: The problem: Most cancers kill patients because of metastatic disease, which requires systemic
therapy. However, systemic therapy approaches suffer from dosing limitations – due to reaching unacceptable
cytotoxic side effects before complete tumor death. To address this deficiency, nanoparticles are particularly
promising – to deliver more drug to tumor cells while sparing non-tumor cells from drug exposure. An “ideal”
nanoparticle carrier would (i) be a clinically approved agent able to carry clinically approved drugs for facile
clinical translation, (ii) deliver drugs preferentially to tumors to attain highly efficacious concentrations without
systemic toxicity, (iii) have a drug release mechanism for controlled release, and (iv) provide confirmation of
drug delivery so physicians will know if efficacious quantities of drug were delivered, e.g. to adapt dosing or
predict response. Yet, more often than not, particles are not clinically approved; drugs are covalently coupled
to particles and require cleavage for release (altering approved formulations of both); there is no defined
release mechanism; or there is no way to monitor actual drug release and thus delivery of active drug in
patients. Proposed solution: We have developed a drug delivery method with potential “ideal” delivery
features. This method is based on clinically approved nanoparticles and is characterized by improved therapy
efficacy, a release mechanism triggered by the tumor, and the ability to self-report the release of the drug in
the tumor through magnetic resonance imaging (MRI). Our nanocarriers are the clinically approved iron oxide
nanoparticle Feraheme and clinically used high molecular weight dextran. Both retain small hydrophobic drugs
through electrostatic interactions (i.e. without change in compositions) and release them in a tumor
environment. Our hypothesis is that the nanocarriers will deliver higher amounts of drugs selectively to tumors
as compared to free-drug and that imaging will be effective at monitoring drug delivery and release. In addition
to MRI multiplexed PET (mPET) will allow us to simultaneously image and quantify radiolabeled drug and
radiolabeled nanocarrier. In Aim 1, we will use mPET/MRI to quantitatively monitor delivery, release and fate of
drug and nanocarrier within orthotopic tumor models. In Aim 2, we will apply mPET/MRI to evaluate if targeted
therapy results in higher drug delivery compared to passive, non-targeted delivery, and in Aim 3, we will
explore if MRI of drug release can predict the therapy response by probing the tumors microenvironment and
receptiveness for nanocarrier-mediated therapy, tailoring nanocarrier-based therapy personally to each patient.
This approach will provide valuable insight into the in vivo kinetics of nanocarrier and drug that cannot be
obtained otherwise. We will obtain essential data for in vivo drug delivery and therapy response with high
potential to improve cancer therapy. This work can be easily translated into clinic. Patients undergoing cancer
therapy could be in the near future imaged with drug-loaded nanocarrier to evaluate if their tumors will be
suitable for such a therapy - essentially to realize much of the promise provided by nanoparticles.
摘要:问题:大多数癌症因转移性疾病而杀死患者,这需要全身性
治疗。但是,由于达到无法接受的,全身治疗方法受到给药的限制
完全肿瘤死亡之前的细胞毒性副作用。为了解决这种缺陷,纳米颗粒尤其是
有希望的 - 向肿瘤细胞提供更多药物,同时免于暴露于药物的非肿瘤细胞。 “理想”
纳米颗粒载体(i)将成为临床认可的药物,能够携带临床认可的药物
临床翻译,(ii)优先向肿瘤输送药物,以达到高效浓度而没有
全身毒性,(iii)具有用于控制释放的药物释放机制,(iv)提供了证实
药物递送,因此医生会知道是否递送了有效量的药物,例如适应给药或
预测响应。然而,粒子经常在临床上批准。药物共价耦合
到颗粒并需要裂解以释放(两者的批准公式更改);没有定义
释放机制;或者没有办法监测实际的药物释放,从而在
患者。建议的解决方案:我们已经开发了一种具有潜在“理想”输送的药物输送方法
特征。该方法基于临床批准的纳米颗粒,其特征是改善治疗
功效,肿瘤触发的释放机制以及自我报告药物释放的能力
通过磁共振成像(MRI)的肿瘤。我们的纳米载体是经临床认可的氧化铁
纳米颗粒Feraheme和临床使用的高分子量葡萄糖。两者都保留小型疏水药物
通过静电相互作用(即成分没有变化)并将其释放到肿瘤中
环境。我们的假设是,纳米载体将有选择地为肿瘤提供更高量的药物
与自由药物相比,该成像将有效监测药物输送和释放。此外
到MRI多路复用PET(MPET)将使我们同时形象并量化放射性标记的药物,并且
放射标记的纳米载体。在AIM 1中,我们将使用MPET/MRI定量监控交付,释放和命运
原位肿瘤模型中的药物和纳米载体。在AIM 2中,我们将应用MPET/MRI来评估是否针对
与被动,非靶向输送相比,治疗会导致较高的药物输送,而在AIM 3中,我们将
探索药物释放的MRI是否可以通过探测肿瘤微环境和
纳米载体介导的疗法的接受度,对每个患者量身定制基于纳米载体的疗法。
这种方法将为纳米载体和药物的体内动力学提供宝贵的见解
否则获得。我们将获得体内药物输送和治疗反应的基本数据
改善癌症治疗的潜力。这项工作可以轻松地转化为诊所。患癌症的患者
治疗可能是在不久的将来用载有药物的纳米载体成像的,以评估其肿瘤是否会
适用于这种治疗 - 本质上是实现纳米颗粒提供的许多诺言。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Grimm其他文献
Jan Grimm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Grimm', 18)}}的其他基金
Cerenkov 2.0 – Cerenkov-activated agents for imaging and therapy
Cerenkov 2.0 — 用于成像和治疗的 Cerenkov 激活剂
- 批准号:
10644155 - 财政年份:2022
- 资助金额:
$ 71.4万 - 项目类别:
Exploiting ferroportin for cancer imaging and therapy
利用铁转运蛋白进行癌症成像和治疗
- 批准号:
10170300 - 财政年份:2017
- 资助金额:
$ 71.4万 - 项目类别:
Exploring PSMA Biology in Tumor neovasculature
探索肿瘤新生血管中的 PSMA 生物学
- 批准号:
9380403 - 财政年份:2017
- 资助金额:
$ 71.4万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8788930 - 财政年份:2012
- 资助金额:
$ 71.4万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8276113 - 财政年份:2012
- 资助金额:
$ 71.4万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8441561 - 财政年份:2012
- 资助金额:
$ 71.4万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8607183 - 财政年份:2012
- 资助金额:
$ 71.4万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Sleep-Wake Cycles of Individuals with Inflammatory Bowel Disease
炎症性肠病患者的睡眠-觉醒周期
- 批准号:
10604701 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
Signaling and metabolic functions of nSMase-2 in hepatic steatosis and onset of insulin resistance
nSMase-2 在肝脂肪变性和胰岛素抵抗发作中的信号传导和代谢功能
- 批准号:
10735117 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
Pre-clinical testing of low intensity ultrasound as novel strategy to prevent paclitaxel-induced hair follicle damage in a humanized mouse model of chemotherapy-induced alopecia
低强度超声的临床前测试作为预防化疗引起的脱发人源化小鼠模型中紫杉醇引起的毛囊损伤的新策略
- 批准号:
10722518 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
The Role of m6A-RNA Methylation in Memory Formation and Recall and Its Modulation and Influence on Long-Term Outcomes as a Consequence of Early Life Lead Exposure
m6A-RNA 甲基化在记忆形成和回忆中的作用及其对早期铅暴露对长期结果的影响
- 批准号:
10658020 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别: