Force phenotyping of airway smooth muscle cells to develop novel asthma therapies

强制气道平滑肌细胞表型分析以开发新型哮喘疗法

基本信息

  • 批准号:
    9452964
  • 负责人:
  • 金额:
    $ 23.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Asthma is currently treated with drugs that target inflammation (e.g. corticosteroids) and the subsequent bronchoconstriction (β2 adrenergic receptor agonists) that leads to airway narrowing. Although there are a variety of mechanisms to inhibit cell force generation and contraction, short- and long-acting bronchodilators operate through a single mechanism of action, which has negative consequences, since adaptation to a long-acting beta agonist leads to reduced efficacy of short-acting beta agonist “rescue inhalers.” There is a need for new drugs that target airway smooth muscle contractility through orthogonal pathways to the beta agonists. However, there are no current methods to perform high-throughput screens targeting cell force generation. We have developed a microtechnology-based high-throughput screening approach to characterize cellular force generation at the single-cell level. We hypothesize that new drugs that interfere with airway smooth muscle cell contractility can be found that act through separate pathways and lead to new treatment options for asthma patients. In Aim 1 we will conduct a high-throughput screen to identify compounds that relax contraction in airway smooth muscle cells. We will validate hit compounds in a tissue model - precision cut lung slices. We also anticipate that selective inhibitors of airway smooth muscle contraction can be developed by counter-screening against other contractile cells. Our platform allows for combined measurement of immunofluorescence, calcium levels, and contractile phenotypes for single cells. In Aim 2 we will use this capability to address whether calcium mobilization is increasing and sufficient to evoke HASM cell shortening by contractile agonists. Molecular inputs that modulate smooth muscle actomyosin cross-bridge cycling and the strength of contraction remain less understood given the larger variety of inputs that control smooth muscle tone. Also, we will use this platform to identify new surface markers associated with hyper-responsive contractile phenotypes highlighting potential key ASM subpopulations involved in disease. Such surface markers would also assist in designing cell-targeted anti-contractility drugs for asthma in the future.
抽象的 目前治疗哮喘的方法是针对炎症的药物(例如皮质类固醇)和随后的药物 导致气道狭窄的支气管收缩(β2 肾上腺素受体激动剂)有多种。 抑制细胞力产生和收缩的机制,短效和长效支气管扩张剂起作用 通过单一的作用机制,这会产生负面后果,因为适应了长效贝塔 激动剂导致短效β激动剂“救援吸入器”的功效降低,因此需要新药。 然而,通过与β受体激动剂的正交途径来靶向气道平滑肌收缩力。 目前我们还没有开发出针对细胞力生成进行高通量筛选的方法。 一种基于微技术的高通量筛选方法,用于表征细胞力的产生 我们努力发现干扰气道平滑肌细胞收缩性的新药可以。 目标 1:发现它们通过不同的途径发挥作用,并为哮喘患者带来新的治疗选择。 我们将进行高通量筛选,以确定能够放松气道平滑肌收缩的化合物 我们将在组织模型(精确切割的肺切片)中验证命中化合物。 气道平滑肌收缩抑制剂可以通过针对其他收缩性收缩剂的反筛选来开发 我们的平台可以结合测量免疫荧光、钙水平和收缩力。 在目标 2 中,我们将使用此功能来解决钙动员是否有效的问题。 增加并足以通过调节收缩激动剂的分子输入引起 HASM 细胞缩短。 鉴于平滑肌肌动球蛋白跨桥循环和收缩强度的了解仍然较少 控制平滑肌张力的更多种类的输入此外,我们将使用这个平台来识别新的表面。 与高反应收缩表型相关的标记突出了潜在的关键 ASM 亚群 这些表面标记物也将有助于设计针对细胞的抗收缩药物。 将来会出现哮喘。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dino Di Carlo其他文献

Dino Di Carlo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dino Di Carlo', 18)}}的其他基金

Hydrogel nanovial technology for single-cell sorting based on extracellular vesicle production
基于细胞外囊泡产生的单细胞分选水凝胶纳米瓶技术
  • 批准号:
    10411907
  • 财政年份:
    2021
  • 资助金额:
    $ 23.48万
  • 项目类别:
Enhancing the potency of mesenchymal stem cell therapies for kidney diseases using lab-on-a-particle technology
使用粒子实验室技术增强间充质干细胞治疗肾脏疾病的效力
  • 批准号:
    10373803
  • 财政年份:
    2021
  • 资助金额:
    $ 23.48万
  • 项目类别:
Lab on a particle technology for functional screening of therapeutic cells
用于治疗细胞功能筛选的粒子技术实验室
  • 批准号:
    10272940
  • 财政年份:
    2021
  • 资助金额:
    $ 23.48万
  • 项目类别:
Hydrogel nanovial technology for single-cell sorting based on extracellular vesicle production
基于细胞外囊泡产生的单细胞分选水凝胶纳米瓶技术
  • 批准号:
    10193200
  • 财政年份:
    2021
  • 资助金额:
    $ 23.48万
  • 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
  • 批准号:
    10213026
  • 财政年份:
    2020
  • 资助金额:
    $ 23.48万
  • 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
  • 批准号:
    10440285
  • 财政年份:
    2020
  • 资助金额:
    $ 23.48万
  • 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
  • 批准号:
    10683974
  • 财政年份:
    2020
  • 资助金额:
    $ 23.48万
  • 项目类别:
Training the next generation of leaders in biomedical engineering design
培训下一代生物医学工程设计领导者
  • 批准号:
    10599275
  • 财政年份:
    2019
  • 资助金额:
    $ 23.48万
  • 项目类别:
Training the next generation of leaders in biomedical engineering design
培训下一代生物医学工程设计领导者
  • 批准号:
    10428473
  • 财政年份:
    2019
  • 资助金额:
    $ 23.48万
  • 项目类别:
Engineering Yeast towards High Titer Production of Monoterpene Indole Alkaloid Natural Products
工程酵母用于高滴度生产单萜吲哚生物碱天然产物
  • 批准号:
    10735587
  • 财政年份:
    2018
  • 资助金额:
    $ 23.48万
  • 项目类别:

相似国自然基金

SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
  • 批准号:
    82300764
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
  • 批准号:
    82370084
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
  • 批准号:
    82370175
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
  • 批准号:
    82370165
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Physical, cellular, and molecular control of tissue fission and fusion
组织裂变和融合的物理、细胞和分子控制
  • 批准号:
    10724005
  • 财政年份:
    2023
  • 资助金额:
    $ 23.48万
  • 项目类别:
Molecular and Cell Biological Foundations of Proteostress-Induced Neuronal Extrusion
蛋白质应激诱导的神经元挤压的分子和细胞生物学基础
  • 批准号:
    10753902
  • 财政年份:
    2023
  • 资助金额:
    $ 23.48万
  • 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
  • 批准号:
    10221568
  • 财政年份:
    2021
  • 资助金额:
    $ 23.48万
  • 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
  • 批准号:
    10379219
  • 财政年份:
    2021
  • 资助金额:
    $ 23.48万
  • 项目类别:
Integrated visualization, control, and analysis of GEF – GTPase networks in living cells
活细胞中 GEF – GTPase 网络的集成可视化、控制和分析
  • 批准号:
    10612345
  • 财政年份:
    2021
  • 资助金额:
    $ 23.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了