In silico Safety Pharmacology
计算机安全药理学
基本信息
- 批准号:9176961
- 负责人:
- 金额:$ 73.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-05 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAction PotentialsAdverse effectsAffinityAmiodaroneAnti-Arrhythmia AgentsArrhythmiaBehaviorBiologicalCardiacCardiotoxicityCategoriesCellsClinical ResearchComplexComputer SimulationDataDependenceDevelopmentDrug IndustryDrug InteractionsDrug TargetingElectrocardiogramEstrogensExhibitsExperimental ModelsFemaleGoalsGonadal Steroid HormonesGovernmentHeartHumanIndustryIon ChannelKineticsLeadLettersLinkLong QT SyndromeMammalian CellMethodologyModelingMolecular ConformationMoxifloxacinNamesPharmaceutical PreparationsPharmacologyPharmacotherapyPhasePhysiologicalPlaguePotassium ChannelPreclinical Drug EvaluationProcessPropertyPublishingRehabilitation therapyRiskRisk FactorsRoleSafetySotalolSpecificityStratificationStructureStructure-Activity RelationshipSurrogate MarkersSystemTestingTissuesToxic effectVerapamilWorkanalogbasedesigndofetilidedrug candidatedrug developmentdrug discoverydrug mechanismdrug rehabilitationfallshealthy volunteerheart electrical activityheart pharmacologyheart rhythmibutilideimprovedinterdisciplinary approachmathematical modelmulti-scale modelingnovelnovel strategiespre-clinicalpredictive modelingprototyperanolazinereceptorresearch studyscreeningsexsimulationsubcellular targetingvirtual
项目摘要
PROJECT SUMMARY: A major factor plaguing drug development is that there is no preclinical drug screen
that can accurately predict unintended drug induced cardiac arrhythmias. The current approaches rely on
substitute markers such as QT interval prolongation on the ECG. Unfortunately, QT prolongation is neither
specific nor sensitive to indicate likelihood of arrhythmias. There is an urgent need to identify a new approach
that can predict actual proarrhythmia rather than surrogate indicators. Mathematical modeling and simulation
constitutes one of the most promising methodologies to reveal fundamental biological principles and
mechanisms, model effects of interactions between system components and predict emergent drug effects.
Thus, we propose the development of a novel multiscale approach based on drug-channel structural
interactions and kinetics intended to predict drug induced cardiotoxicity in the context of: 1) preclinical drug
screening, 2) drug rehabilitation, and 3) prediction of the intersection of drug effects and coexistent risk factors.
Our underlying hypothesis is that the fundamental mode of drug interaction derived from each drug’s unique
structure activity relationship determines the resultant effects on cardiac electrical activity in cells and tissue.
By capturing these complex drug channel interactions in a model, we expect to be able to predict drug safety
or electro-toxicity in the heart. We have brought together an expert team to assemble and test a new multiscale
model framework that connects detailed mathematical models to predict atomic scale interactions of drugs on
the promiscuous hERG potassium channel to functional scale predictions at the level of the channel, cell and
tissue. Predictions from the atomic structure simulations will be used to inform the kinetic parameters of
models that capture the complex dynamical interactions of drugs and ion channels. The computational
components will then be studied in predictive models at the channel, cell and tissue scales to expose
fundamental mechanisms and complex interactions underlying emergent behaviors. Experiments in
mammalian cells and tissues will be undertaken to validate model predictions. Drug properties will be
perturbed in models to rehabilitate dangerous drugs and reduce their potential toxicity. The multiscale model
for prediction of cardiopharmacology that we will develop in this application will be applied to projects
demonstrating its usefulness for efficacy or toxicity of drug treatments in the complex physiological system of
the heart.
项目摘要:困扰药物开发的一个主要因素是没有临床前药物筛选
目前的方法依赖于能够准确预测意外药物引起的心律失常。
心电图上的 QT 间期延长等替代标志物不幸的是,QT 间期延长两者都不是。
明确或敏感地指示心律失常的可能性迫切需要确定一种新方法。
可以预测实际的致心律失常而不是替代指标。
构成了揭示基本生物学原理和最有前途的方法之一
机制、系统组件之间相互作用的模型效应并预测出现的药物效应。
因此,我们建议开发一种基于药物通道结构的新型多尺度方法
旨在预测药物引起的心脏毒性的相互作用和动力学:1) 临床前药物
筛查,2) 戒毒康复,以及 3) 药物效应与共存危险因素交叉点的预测。
我们的基本假设是药物相互作用的基本模式源自每种药物的独特性
结构活动关系决定了细胞和组织中心电活动的最终影响。
通过在模型中捕获这些复杂的药物通道相互作用,我们期望能够预测药物安全性
我们聚集了一个专家团队来组装和测试新的多尺度。
模型框架,连接详细的数学模型来预测药物的原子尺度相互作用
混杂的 hERG 钾通道在通道、细胞和水平上进行功能规模预测
原子结构模拟的预测将用于告知组织的动力学参数。
捕捉药物和离子通道复杂动态相互作用的模型。
然后将在通道、细胞和组织尺度的预测模型中研究成分,以揭示
紧急行为实验的基本机制和复杂的相互作用。
将利用哺乳动物细胞和组织来验证模型预测的药物特性。
扰乱模型以恢复危险药物并降低其潜在毒性。
我们将在此应用程序中开发的心脏药理学预测将应用于项目
证明其在复杂的生理系统中对药物治疗的功效或毒性的有用性
心脏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
COLLEEN E CLANCY其他文献
COLLEEN E CLANCY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('COLLEEN E CLANCY', 18)}}的其他基金
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10406687 - 财政年份:2021
- 资助金额:
$ 73.97万 - 项目类别:
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10394236 - 财政年份:2020
- 资助金额:
$ 73.97万 - 项目类别:
Multi-Scale Modeling of Vascular Signaling Units
血管信号单元的多尺度建模
- 批准号:
10614418 - 财政年份:2020
- 资助金额:
$ 73.97万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10397892 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10001997 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10092300 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
Development of the Predictive NeuroCardiovascular Simulator
预测性神经心血管模拟器的开发
- 批准号:
10215080 - 财政年份:2018
- 资助金额:
$ 73.97万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Discovery and Development of a Benzoquinone Molecule as a Novel Anesthetic
苯醌分子作为新型麻醉剂的发现和开发
- 批准号:
10732956 - 财政年份:2023
- 资助金额:
$ 73.97万 - 项目类别:
Development of A Focused Ultrasound Device for Noninvasive, Peripheral Nerve Blockade to Manage Acute Pain
开发用于非侵入性周围神经阻断来治疗急性疼痛的聚焦超声装置
- 批准号:
10740796 - 财政年份:2023
- 资助金额:
$ 73.97万 - 项目类别:
Mechanisms of Hypoxia-Mediated Disturbances in Cerebral Maturation in a Fetal Ovine Model of Maternal Sleep Apnea
母体睡眠呼吸暂停胎羊模型中缺氧介导的大脑成熟障碍的机制
- 批准号:
10608612 - 财政年份:2023
- 资助金额:
$ 73.97万 - 项目类别:
Virtual systemic identification of drug targets of obesity candidate genes
肥胖候选基因药物靶点的虚拟系统识别
- 批准号:
10639818 - 财政年份:2023
- 资助金额:
$ 73.97万 - 项目类别:
Systematic identification of cardiotoxic e-cigarette flavorants
系统鉴定心脏毒性电子烟香料
- 批准号:
10610732 - 财政年份:2022
- 资助金额:
$ 73.97万 - 项目类别: