Tuning Biomaterials-immune cell interactions for treatment of glioblastoma multiforme
调整生物材料-免疫细胞相互作用治疗多形性胶质母细胞瘤
基本信息
- 批准号:9348653
- 负责人:
- 金额:$ 42.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-07 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdjuvantAlpha CellAntibody ResponseAntibody TherapyAntigen PresentationAntigen-Presenting CellsAntigensApoptosisB-LymphocytesBenchmarkingBiocompatible MaterialsBiologyCD8-Positive T-LymphocytesCD8B1 geneCancer VaccinesCell CommunicationCessation of lifeChitosanClinical TrialsClonal ExpansionCombined Modality TherapyCross PresentationCross-PrimingCytotoxic T-LymphocytesDataDendritic CellsDendritic cell activationEffector CellEngineeringFormulationGenerationsGlioblastomaGliomaGoalsHumanImmuneImmune responseImmunityImmunologic MemoryImmunosuppressionImmunosuppressive AgentsInfiltrationIntracranial NeoplasmsLeadLigandsLipaseLipidsLocationLymphoid TissueMalignant - descriptorMediatingModelingMusMyelogenousMyeloid CellsOilsOperative Surgical ProceduresPatientsPropertyPublic HealthRadiation therapyRelapseResearchResearch ProposalsSeriesSerumStructureStructure-Activity RelationshipSuppressor-Effector T-LymphocytesSystemT cell responseT memory cellT-LymphocyteTechnologyTestingTherapeuticTransplantationTreatment EfficacyVaccinationVaccinesVesicleWaterWorkbasecell killingcrosslinkcytotoxicdesignimmune activationimmune functionimprovedin vivolymph nodesmortalitymouse modelnanoparticleneoplastic cellnext generationnovelnovel vaccinesoutcome forecastpreventreceptorresponsetargeted treatmenttherapy designtraffickingtumortumor growthvaccine efficacy
项目摘要
Abstract
Despite advances in surgery, chemo- and radiation-therapy, patients with glioblastoma multiforme (GBM) have
a grim prognosis with less than 10% of patients surviving more than 5 years. Recent studies have shown
potential of T and B-cell responses against GBM. However, existing technologies fail to elicit robust levels of
anti-GBM immune responses with therapeutic efficacy. Therefore, there is a critical need for an alternative and
effective strategy that can achieve strong T and B-cell responses against GBM. Our long-term research goal is
to characterize the structure/function relationship governing immune activation with biomaterials. Our objective
in this application is to understand how physicochemical properties of biomaterial-based vaccine platforms
impact materials interactions with lymphoid tissues, with particular emphasis on (i) in vivo antigen (Ag)
accumulation in lymph nodes, (ii) Ag presentation by antigen-presenting cells, and (iii) induction of cytotoxic
CD8+ T lymphocyte (CTL) and antibody (Ab) responses against GBM. To that end, we have developed a novel
lipid-based system, called interbilayer-crosslinked multilamellar vesicles (ICMVs). We show that ICMVs (1)
efficiently transport Ag to local draining lymph nodes, (2) promote Ag presentation by antigen-presenting cells,
(3) generate stronger CTL responses than other conventional adjuvants, including CpG in water-in-oil adjuvant,
Montanide (arguably one of the strongest CTL adjuvant systems in clinical trials), and (4) exert potent
therapeutic efficacy in murine tumor models, including intracranial GBM. Here, we will synthesize a series of
new ICMVs with varying materials properties and determine the effects of biomaterials on immune activation
and induction of CTL and Ab responses. We will evaluate their therapeutic efficacy in murine models of
transplantable GBM as well as genetically induced GBM. We will also assess our strategy in combination with
therapies designed to stimulate immune functions within GBM. Overall, these studies will improve our
understanding of the biology-materials interfaces and may lead to new design principles for biomaterials
engineered to elicit robust levels of immune responses, delay tumor growth, and prevent relapse. More
broadly, the work proposed will address current technical limitations in vaccine technologies and potentially
lead to a new treatment option for GBM patients.
抽象的
尽管手术进展,化学疗法和放射治疗,但多形胶质母细胞瘤患者(GBM)患有
不到10%的患者的严峻预后超过5年。最近的研究表明
T和B细胞对GBM的反应的潜力。但是,现有技术无法引起强大的水平
具有治疗功效的抗GBM免疫反应。因此,对替代方案有迫切需要
有效的策略可以实现针对GBM的强烈T和B细胞反应。我们的长期研究目标是
表征与生物材料免疫激活的结构/功能关系。我们的目标
在此应用中,是要了解基于生物材料的疫苗平台的物理化学特性
影响材料与淋巴组织的相互作用,特别强调(i)体内抗原(Ag)
在淋巴结中积累,(II)通过抗原呈递细胞的AG表现,(iii)诱导细胞毒性
CD8+ T淋巴细胞(CTL)和针对GBM的抗体(AB)反应。为此,我们开发了一本小说
基于脂质的系统,称为Interbilayer-Crosslinked Multilamellar囊泡(ICMVS)。我们表明ICMVS(1)
有效地将Ag转运到局部排水淋巴结,(2)促进抗原呈递细胞的Ag表示,
(3)比其他常规佐剂产生更强的CTL响应,包括在油中佐剂中的CpG,
Montanide(可以说是临床试验中最强的CTL辅助系统之一),(4)发挥有效性
包括颅内GBM在内的鼠肿瘤模型中的治疗功效。在这里,我们将合成一系列
具有不同材料特性的新ICMV,并确定生物材料对免疫激活的影响
以及CTL和AB响应的诱导。我们将在鼠模型中评估它们的治疗功效
可移植的GBM以及遗传诱导的GBM。我们还将评估我们的策略与
旨在刺激GBM内免疫功能的疗法。总体而言,这些研究将改善我们的
了解生物材料界面,并可能导致生物材料的新设计原理
设计以引起强大的免疫反应水平,延迟肿瘤生长并防止复发。更多的
广泛地,提出的工作将解决疫苗技术的当前技术局限
为GBM患者提供新的治疗选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James J Moon其他文献
BATF2 suppresses cancer initiation by promoting γδ T-cell-mediated immunity
BATF2 通过促进 γδ T 细胞介导的免疫来抑制癌症发生
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wang Gong;Hulya Taner;Yuesong Wu;Wanqing Cheng;Kohei Okuyama;Zaiye Li;Shadmehr Demehri;Felipe Nor;Deepak Nagrath;Steven B Chinn;Christopher R Donnelly;James J Moon;Yuying Xie;Yu Leo Lei - 通讯作者:
Yu Leo Lei
James J Moon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James J Moon', 18)}}的其他基金
Biomaterials for modulating the gut microbiome for immune activation
用于调节肠道微生物组以激活免疫的生物材料
- 批准号:
10614059 - 财政年份:2022
- 资助金额:
$ 42.37万 - 项目类别:
T cell Tolerance to Enteric Commensal Bacteria
T 细胞对肠道共生细菌的耐受性
- 批准号:
10608196 - 财政年份:2021
- 资助金额:
$ 42.37万 - 项目类别:
T cell Tolerance to Enteric Commensal Bacteria
T 细胞对肠道共生细菌的耐受性
- 批准号:
10299254 - 财政年份:2021
- 资助金额:
$ 42.37万 - 项目类别:
T cell Tolerance to Enteric Commensal Bacteria
T 细胞对肠道共生细菌的耐受性
- 批准号:
10424555 - 财政年份:2021
- 资助金额:
$ 42.37万 - 项目类别:
Elicitation of mucosal immune responses against HIV
引发针对 HIV 的粘膜免疫反应
- 批准号:
9292510 - 财政年份:2016
- 资助金额:
$ 42.37万 - 项目类别:
Elicitation of mucosal immune responses against HIV
引发针对 HIV 的粘膜免疫反应
- 批准号:
9752434 - 财政年份:2016
- 资助金额:
$ 42.37万 - 项目类别:
Elicitation of mucosal immune responses against HIV
引发针对 HIV 的粘膜免疫反应
- 批准号:
9539522 - 财政年份:2016
- 资助金额:
$ 42.37万 - 项目类别:
Elicitation of mucosal immune responses against HIV
引发针对 HIV 的粘膜免疫反应
- 批准号:
9271737 - 财政年份:2016
- 资助金额:
$ 42.37万 - 项目类别:
Tuning Biomaterials-immune cell interactions for treatment of glioblastoma multiforme
调整生物材料-免疫细胞相互作用治疗多形性胶质母细胞瘤
- 批准号:
9512575 - 财政年份:2016
- 资助金额:
$ 42.37万 - 项目类别:
相似国自然基金
肿瘤微环境多层次调控的功能化纳米佐剂用于增强膀胱癌放疗疗效的机制研究
- 批准号:82303571
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向FPPS的双磷酸疫苗佐剂的开发
- 批准号:82341040
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
皮内接种抗原佐剂复合疫苗跨器官诱导呼吸道黏膜免疫反应
- 批准号:82341042
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
双重生物响应性自佐剂聚多肽载体构建高效mRNA癌症疫苗
- 批准号:52373299
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新型免疫调节复合佐剂的机制研究及在疫苗开发中的应用
- 批准号:82341039
- 批准年份:2023
- 资助金额:95 万元
- 项目类别:专项基金项目
相似海外基金
Immunotherapy for Synucleinopathies: Can Gut Microbiota Affect Efficacy?
突触核蛋白病的免疫疗法:肠道微生物群会影响疗效吗?
- 批准号:
10666872 - 财政年份:2023
- 资助金额:
$ 42.37万 - 项目类别:
Uncovering the basis and implications of lineage plasticity in breast cancer
揭示乳腺癌谱系可塑性的基础和影响
- 批准号:
10544736 - 财政年份:2022
- 资助金额:
$ 42.37万 - 项目类别:
Alu dsRNAs as adjuvants for influenza vaccines
Alu dsRNA 作为流感疫苗佐剂
- 批准号:
10605272 - 财政年份:2022
- 资助金额:
$ 42.37万 - 项目类别:
Rational design and efficacy testing of vaccines against HCV
HCV疫苗的合理设计和功效测试
- 批准号:
10618256 - 财政年份:2022
- 资助金额:
$ 42.37万 - 项目类别: