Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
基本信息
- 批准号:9797176
- 负责人:
- 金额:$ 30.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-17 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectArchitectureAwardBehaviorBiological AssayBiotechnologyCellsChemicalsClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplexCoupledDNADNA RepairDNA biosynthesisDiseaseDrug resistanceEpigenetic ProcessEventExperimental DesignsGenetic DiseasesGenetic MaterialsGenomeGenomicsGoalsHealthHumanHybridsLaboratoriesLesionLifeMalignant NeoplasmsMicrosatellite InstabilityMismatch RepairMolecularMolecular GeneticsMutationNatureOligonucleotide ProbesOrganismOutcomePathogenicityPathway interactionsPlayProcessResearchRoleSeaSourceTechniquesToxic effectTreesViralacronymsantimicrobialenvironmental mutagensin vivoinnovationnext generationnovelnovel therapeuticspathogenrepairedtumor
项目摘要
All organisms strive to maintain genomic fidelity in the face of agents that can damage their genetic material
and the possibility that errors that can occur whenever their DNA is replicated. The ultimate goals of my
research are to understand (i) how the mechanism and high-level coordination of DNA repair processes are
governed by molecular, genetic, and epigenetic factors in vivo; (ii) how these factors affect diverse repair
processes in different contexts to affect human health; and (iii) how clinically-important modulators of DNA
repair activities and of repair-related toxicity can be leveraged as novel therapeutics. I have focused primarily
on DNA mismatch repair (MMR) pathways, the pathways responsible for correcting errors that occur during
DNA replication. As a primary mechanism of mutation avoidance in nearly all organisms, MMR plays a central
role in many diverse processes that affect human health, from the emergence of drug resistance in infectious
pathogens and cancers to the onset and treatment of somatic genetic diseases. We developed a novel assay
to deconstruct the biomolecular mechanisms of MMR that uses chemically-modified oligonucleotide probes to
insert targeted DNA `mismatches' directly into the genome of living cells. This assay, which we call by the
acronym `SPORE,' can thus be used to directly interrogate replication-coupled repair processes like MMR
quantitatively in a strand-, orientation-, and lesion-specific manner in vivo—something nearly impossible to
achieve otherwise. Using the SPORE assay as a uniquely powerful baseline of approach, and in combination
with next-generation biotechnologies like CRISPR and innovative experimental design, my laboratory will seek
to answer the following broad-spectrum and transdisciplinary questions: · How do different molecular, genetic,
and epigenetic factors affect the higher-order architecture (components and interactions), coordination,
dynamics of different MMR mechanisms? How do these factors affect repair-associated toxicities? Are different
molecular lesions recognized by MMR repaired according to different mechanisms and toxicities? · Do the
unique repair mechanisms in pathogenic organisms represent a novel source of antimicrobial targets? · How
do viral factors and environmental mutagens modulate MMR and MMR-related toxicities and by what
mechanism? What is their role in hypermutation and emergence of drug resistance? · What governs the
tradeoff between mutagenic and anti-mutagenic roles of MMR in microsatellite instability (MSI) diseases? ·
What occurs during collisions between DNA repair or other processes on DNA, and what is the nature and
origin of related catastrophic mutational events? These questions are each complex in their own right and have
remained difficult to answer using traditional techniques, but our unique hybrid approach provides a direct way
to address each of them. The likely outcomes during the R35 award will be numerous breakthroughs in our
understanding of mutational processes and how it can be manipulated in living cells; with a long-term impact
being a sea-change in the ability to probe and exploit DNA damage repair mechanisms to treat disease.
所有生物都在努力维持可能损害其遗传物质的药物的基因组忠诚度
以及每当复制其DNA时可能出现的错误的可能性。我的最终目标
研究将了解(i)DNA修复过程的机制和高级协调如何
由体内的分子,遗传和表观遗传因子约束; (ii)这些因素如何影响潜水员的维修
在不同情况下影响人类健康的过程; (iii)DNA的临床重要调节剂如何
维修活动和与修复有关的毒性可以用作新的疗法。我专注于小学
在DNA不匹配修复(MMR)途径上,负责纠正错误的途径
DNA复制。作为几乎所有生物中突变避免突变的主要机制,MMR扮演着中央
在影响人类健康的许多潜水过程中的作用,从传染性的耐药性出现
病原体和癌症开始和治疗体细胞遗传疾病。我们开发了一种新颖的测定法
解构使用化学改性寡核苷酸问题的MMR的生物分子机制
将靶向的DNA“不匹配”直接插入活细胞的基因组中。这个测定法,我们通过
因此,可以使用首字母缩写“孢子”来直接询问复制耦合修复过程(例如MMR)
以链,定向和病变特定的方式进行定量 - 几乎不可能
否则就可以实现。将孢子测定作为一种独特的方法基线,并组合
凭借CRISPR和创新实验设计等下一代生物技术,我的实验室将寻求
回答以下广谱和跨学科问题:·不同的分子,遗传,如何
和表观遗传因素会影响高阶架构(组成和相互作用),协调性,,
不同MMR机制的动力学?这些因素如何影响维修相关的毒性?是不同的
根据不同机制和毒性修复的MMR识别的分子病变? ·做
致病生物中的独特修复机制代表了抗菌靶标的新颖来源? · 如何
病毒因素和环境诱变剂调节MMR和与MMR相关的毒性,以及什么
机制?他们在耐药性的超名和出现中的作用是什么? ·是什么控制
MMR在微卫星不稳定性(MSI)疾病中的诱变和抗杀菌作用之间的权衡? ·
DNA修复或DNA上其他过程之间发生碰撞时发生的情况,什么是性质和
相关灾难性突变事件的起源?这些问题本身都是复杂的,并且
使用传统技术仍然很难回答,但是我们独特的混合方法提供了一种直接的方式
解决每个人。 R35奖中的可能结果将是我们的许多突破
了解突变过程及其在活细胞中如何操纵的过程;长期影响
作为探测和利用DNA损伤修复机制治疗疾病的能力的海洋变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Alan Josephs其他文献
Eric Alan Josephs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Alan Josephs', 18)}}的其他基金
A Molecular Grammar for Guide RNAs (gRNAs) with Engineered Secondary Structures
具有工程化二级结构的向导 RNA (gRNA) 的分子语法
- 批准号:
10683334 - 财政年份:2022
- 资助金额:
$ 30.45万 - 项目类别:
A Molecular Grammar for Guide RNAs (gRNAs) with Engineered Secondary Structures
具有工程化二级结构的向导 RNA (gRNA) 的分子语法
- 批准号:
10511156 - 财政年份:2022
- 资助金额:
$ 30.45万 - 项目类别:
Mechanism and Architecture of EndoMS/NucS Mutation Avoidance in Mycobacteria
分枝杆菌 EndoMS/NucS 突变避免的机制和架构
- 批准号:
9809008 - 财政年份:2019
- 资助金额:
$ 30.45万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10581066 - 财政年份:2019
- 资助金额:
$ 30.45万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10019571 - 财政年份:2019
- 资助金额:
$ 30.45万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10663901 - 财政年份:2019
- 资助金额:
$ 30.45万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10206198 - 财政年份:2019
- 资助金额:
$ 30.45万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10455496 - 财政年份:2019
- 资助金额:
$ 30.45万 - 项目类别:
Forces and Long-Distance Coupling along DNA in the Mismatch Repair (MMR) Pathway
错配修复 (MMR) 途径中沿 DNA 的力和长距离耦合
- 批准号:
8783242 - 财政年份:2014
- 资助金额:
$ 30.45万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 30.45万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 30.45万 - 项目类别:
Preclinical Development of a Novel Therapeutic Agent for Idiopathic Pulmonary Fibrosis
特发性肺纤维化新型治疗剂的临床前开发
- 批准号:
10696538 - 财政年份:2023
- 资助金额:
$ 30.45万 - 项目类别: