Multimodal biocompatible microLED devices for diverse neuroscience applications
适用于多种神经科学应用的多模式生物相容性 microLED 设备
基本信息
- 批准号:8412609
- 负责人:
- 金额:$ 80.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-26 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffectiveAfferent NeuronsAmericanAmericasAnimalsAnxietyArchitectureAreaArticular Range of MotionBehaviorBiocompatibleBrainBrain regionBurn injuryCell physiologyCellsChronicClinicalCoinComplexDevelopmentDevicesDiseaseDissectionDorsalDrug Delivery SystemsEngineeringEpidemicFiber OpticsFoundationsFunctional disorderFutureG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGene Transduction AgentGeneticGoalsHealthHumanHypersensitivityInstitute of Medicine (U.S.)InstitutesInterventionLaboratoriesLasersLeadLightMechanicsMediatingMedical ResearchMedicineMental DepressionMental disordersMicroelectrodesMiniaturizationMood DisordersMoodsMusNanotechnologyNational Institute of Drug AbuseNational Institute of Mental HealthNervous system structureNeuraxisNeurobiologyNeurogliaNeuronsNeuropeptidesNeurosciencesNociceptorsOptical MethodsPainPain DisorderPatternPeripheralPeripheral NervesPeripheral Nervous SystemPopulationPopulation HeterogeneityPricePsyche structureReportingResearchRewardsRiskRoleScienceScientistSensorySignal TransductionSourceStressSystemTechniquesTechnologyTestingTherapeutic InterventionTraumatic Stress DisordersViral VectorWireless Technologyaddictioncell typecentral painchronic paindesigndesign and constructiondirect applicationeffective therapylocus ceruleus structuremonoaminemultidisciplinarynanomaterialsnanoscalenerve injurynervous system disorderneural circuitneurobehavioralnew technologynoradrenergicnoveloptogeneticspainful neuropathypreclinical studyprogramsprototypereceptorrelating to nervous systemresearch studyresponsesensorsocialspontaneous painstressortool
项目摘要
DESCRIPTION (provided by applicant): Chronic pain, depression, and addiction represent immense health problems of epidemic proportions. The 2011 Institute of Medicine (IOM) report on "Relieving Pain in America" states that over 116 million Americans suffer from chronic pain with an annual price tag exceeding half a trillion dollars. Similarly, the National Institute of Mental Heath and National Institute of Drug Abuse have reported that mood disorders and addiction affect greater than 10% of the total US population. The mammalian nervous system is built from hundreds of different neuronal and glial cell types. This incredibly diverse array of cells has made dissecting brain function and treating neuropathogical states such as pain, depression, and addiction one of the most difficult challenges facing medical research. Understanding how these neural circuits communicate with one another is one of the major goals of neuroscience, and discoveries in this arena open new avenues for therapeutic intervention. As nanotechnology and materials engineering have evolved, there has been an increasing need and potential for neural micropolymeric interfaces to be developed that could be used for the study and treatment of neurological and psychiatric diseases. In this transformative research application we have assembled a multidisciplinary collaborative team between materials scientists and neurobiologists. Together we propose to: (i) Develop novel biocompatible, multimodal micro-ILED devices suitable for stable integration with the central and peripheral nervous system, (ii) use a combination of these micro-ILED devices with optogenetics to dissect the neural circuits involved in and develop treatments for neuropathic pain (iii) employ these micro-ILED devices for dissecting neural circuits and signal transduction in stress and affective disorders. In an integrated team approach, we will test, develop, and optimize this novel technology. The ultimate goal will be to develop multifunctional nanomaterial micro-ILED wireless devices for full integration with diverse neural circuits. In this project we using a combination of light-sensitive channel activation and light-activation of intracellular signal transduction cascades using engineered G-protein coupled receptors (GPCRs) within peripheral neural circuits involved in pain and central neural circuits involved in stress and negative affect including the locus ceoruleus (LC) and ventral tegemental areas (VTA). Using these novel micro-ILED devices we will dissect the heterogeneous populations of sensory nociceptors, stress, and reward neurocircuitry. Together this research will not only provide a foundation for the integration of nanoscale devices with mammalian neural circuits, but also it will guide future efforts to interface and interact with selected neural circuits in clinical settigs with respect to pain and psychiatric diseases.
PUBLIC HEALTH RELEVANCE: A better and more complete understanding of the specific wiring of the brain and peripheral nerves is critical for developing effective treatments for nervous system diseases and disorders including chronic pain, depression, and addiction. The experiments and engineering described in this proposal aim to develop, test, and interface micro-devices that can safely and stably interact with the nervous system in new ways to both understand brain circuitry and to manipulate that circuitry to reduce the effects of nervous system disease and dysfunction.
描述(由申请人提供):慢性疼痛,抑郁和成瘾代表了流行比例的巨大健康问题。 2011年医学研究所(IOM)报告说,“缓解美国疼痛”指出,超过1.16亿美国人患有慢性疼痛,年价格超过半万亿美元。同样,美国国家精神荒地研究所和美国国家药物滥用研究所也报告说,情绪障碍和成瘾会影响美国总人口的10%以上。哺乳动物神经系统是由数百种不同的神经元和神经胶质细胞类型构建的。这种令人难以置信的多样化的细胞使解剖脑功能并治疗神经病态状态,例如疼痛,抑郁和成瘾是医学研究面临的最困难的挑战之一。了解这些神经回路如何相互通信是神经科学的主要目标之一,并且在该竞技场的发现开放了新的治疗干预途径。随着纳米技术和材料工程的发展,开发神经微聚合物界面的需求越来越大,可以用于研究和治疗神经和精神病疾病。在这项变革性的研究应用程序中,我们组建了材料科学家和神经生物学家之间的多学科合作团队。我们共同提出:(i)开发新型的生物相容性,多模式的微型设备,适合与中心和外围神经系统稳定整合,(ii)使用这些微型设备与光遗传学的组合,以解剖和开发与神经性疼痛相关的神经循环,以进行神经性疼痛(II II II II II II III),并开发疾病。在集成的团队方法中,我们将测试,开发和优化这项新技术。最终目标是开发多功能纳米材料微型无线设备,以与不同的神经回路完全集成。在这个项目中,我们使用在周围神经回路中使用工程的G蛋白耦合受体(GPCR)的光敏信道激活和细胞内信号转导级联的光激活涉及疼痛和中央神经回路中的中心神经回路,并参与压力和负面影响和负面影响,包括位点(LC)(LC)(LC)和通气区域(Vtral tetral tetral Temelectal(Vtral tetral Tepral))(VTA)(VTA)。使用这些新型的微型设备,我们将剖析感官伤害感受器,压力和奖励神经记录的异质种群。这项研究不仅将为纳米级设备与哺乳动物神经回路的整合提供基础,而且还将指导未来的努力,以在疼痛和精神病疾病中与临床替代物中选定的神经回路互动和相互作用。
公共卫生相关性:对大脑和周围神经的特定接线的更好,更完整的了解对于为神经系统疾病和疾病(包括慢性疼痛,抑郁和成瘾)开发有效的治疗方法至关重要。本提案中描述的实验和工程旨在开发,测试和界面微设备,以新的方式与神经系统安全,稳定地相互作用,以了解脑电路并操纵该电路以减少神经系统疾病和功能障碍的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert W Gereau其他文献
Robert W Gereau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert W Gereau', 18)}}的其他基金
Functional and genetic characterization of human DRG and spinal cord at single cell resolution
单细胞分辨率下人类 DRG 和脊髓的功能和遗传特征
- 批准号:
10593847 - 财政年份:2022
- 资助金额:
$ 80.98万 - 项目类别:
INTERCEPT: Integrated Research Center for human Pain Tissues
截取:人类疼痛组织综合研究中心
- 批准号:
10707405 - 财政年份:2022
- 资助金额:
$ 80.98万 - 项目类别:
Functional and genetic characterization of human DRG and spinal cord at single cell resolution
单细胞分辨率下人类 DRG 和脊髓的功能和遗传特征
- 批准号:
10707419 - 财政年份:2022
- 资助金额:
$ 80.98万 - 项目类别:
INTERCEPT: Integrated Research Center for human Pain Tissues
截取:人类疼痛组织综合研究中心
- 批准号:
10593843 - 财政年份:2022
- 资助金额:
$ 80.98万 - 项目类别:
Development of an implantable closed-loop system for delivery of naloxone for the prevention of opioid-related overdose deaths
开发用于输送纳洛酮的植入式闭环系统,以预防阿片类药物相关的过量死亡
- 批准号:
10022117 - 财政年份:2019
- 资助金额:
$ 80.98万 - 项目类别:
Development of an implantable closed-loop system for delivery of naloxone for the prevention of opioid-related overdose deaths
开发用于输送纳洛酮的植入式闭环系统,以预防阿片类药物相关的过量死亡
- 批准号:
10456452 - 财政年份:2019
- 资助金额:
$ 80.98万 - 项目类别:
Development of an implantable closed-loop system for delivery of naloxone for the prevention of opioid-related overdose deaths
开发用于输送纳洛酮的植入式闭环系统,以预防阿片类药物相关的过量死亡
- 批准号:
9902945 - 财政年份:2019
- 资助金额:
$ 80.98万 - 项目类别:
相似国自然基金
自然场景下基于自监督的精准视频情感识别研究
- 批准号:62362003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
- 批准号:62373334
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳腺癌患者社交网络文本情感自动识别与决策的精准干预系统研制及实证研究
- 批准号:72304131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依赖转录因子CTCF的功能性SNP在双相情感障碍发病中的机制研究
- 批准号:82301711
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双相情感障碍的发病机制研究
- 批准号:32371008
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Validation of Neuropilin-1 receptor signaling in nociceptive processing
伤害感受处理中 Neuropilin-1 受体信号传导的验证
- 批准号:
10774563 - 财政年份:2023
- 资助金额:
$ 80.98万 - 项目类别:
Sickle cell disease gut dysbiosis effects on CNS pain processing
镰状细胞病肠道菌群失调对中枢神经系统疼痛处理的影响
- 批准号:
10747045 - 财政年份:2023
- 资助金额:
$ 80.98万 - 项目类别:
Sickle cell disease gut dysbiosis effects on CNS pain processing
镰状细胞病肠道菌群失调对中枢神经系统疼痛处理的影响
- 批准号:
10452753 - 财政年份:2021
- 资助金额:
$ 80.98万 - 项目类别: