Allostery and voltage sensing of membrane proteins
膜蛋白的变构和电压传感
基本信息
- 批准号:8457601
- 负责人:
- 金额:$ 4.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-27 至 2015-09-26
- 项目状态:已结题
- 来源:
- 关键词:4-AminopyridineAffinityBinding SitesBrainCellsDrug Delivery SystemsEngineeringFrequenciesG-Protein-Coupled ReceptorsGated Ion ChannelGoalsHealthHeartHumanLeadLengthLigand BindingLigandsLocationMeasuresMembrane PotentialsMembrane ProteinsMovementMultiple SclerosisMuscarinic Acetylcholine ReceptorNamesOocytesPlayPotassiumPotassium ChannelPropertyProteinsRoleSignal TransductionSystemTechniquesTestingTherapeuticTransmembrane DomainVoltage-Clamp TechnicsVoltage-Gated Potassium ChannelXenopus oocyteextracellularimprovedmonomernovelprotein phosphatase inhibitor-2responsesensortherapeutic targetvoltage
项目摘要
DESCRIPTION (provided by applicant): This project has the goal of understanding the allosteric modulation, through voltage sensing, of voltage-gated ion channels and GPCRs has on their function. Allosteric modulation of voltage-gated ion channels occurs via domains not directly needed for voltage sensing and gating, that is, the first three transmembrane domains of each monomer, and the linker attaching this domain to the remainder of the protein. Allosteric modulation of GPCR activity occurs through voltage-sensing. Engineered versions of the Shaker potassium channel and the muscarinic acetylcholine receptor type 2 will be expressed in Xenopus oocytes and probed using electrophysiological and fluorescent techniques. The aims are to understand the role the linker between the third and fourth transmembrane domains of voltage-gated potassium channels plays in its function, to understand the movements that occur in the second and third transmembrane domains upon changes in membrane potential, independent of the movement of the primary voltage sensor in the fourth transmembrane domain, and to understand the movements that occur in response to changes in membrane potential in GPCRs. The long-term objectives of this project are to advance our understanding of potential novel targets for therapeutics targeted to modulate the voltage-sensing properties of voltage-gated ion channels and GPCRs. As these membrane proteins are already successful targets for many therapies, improved understanding of how to modulate their function should lead towards improvements of human health.
PUBLIC HEALTH RELEVANCE: Voltage-gated ion channels and GPCRs are voltage-sensitive membrane proteins; their proper functioning is crucial for appropriate signaling between cells, for the activity of the brain, and for the beating of the heart. Understanding the movements these membrane proteins make in response to electrical changes, and which parts of the proteins are necessary for the protein to function correctly, will greatly improve the ability to produce novel therapies and drugs that target these proteins.
描述(由申请人提供):该项目的目的是通过电压门控离子通道和GPCR在其功能上了解变构调制,通过电压传感。电压门控离子通道的变构调节是通过不直接需要的电压传感和门控进行的,即每个单体的前三个跨膜结构域,以及将该域连接到其余蛋白质的接头。 GPCR活性的变构调节是通过电压传感发生的。振动钾通道的工程版本和毒蕈碱乙酰胆碱受体2型将以武虫卵母细胞表达,并使用电生理和荧光技术进行探测。其目的是了解电压门控钾通道的第三和第四跨膜结构域之间的连接器在其功能中发挥作用,以了解膜电位变化的第二和第三跨膜域中发生的运动,而与第四跨跨跨跨跨跨跨跨跨跨跨跨跨跨跨跨跨跨跨跨跨跨度传感器的运动无关。该项目的长期目标是促进我们对针对调节电压门控离子通道和GPCR的电压感应特性的潜在新型治疗剂的理解。由于这些膜蛋白已经是许多疗法的成功靶标,因此对如何调节其功能的理解得到了改善,应导致改善人类健康。
公共卫生相关性:电压门控离子通道和GPCR是对电压敏感的膜蛋白;它们的适当功能对于细胞之间的适当信号,大脑的活性以及心脏跳动至关重要。了解这些膜蛋白会响应电动变化而产生的运动,以及蛋白质的哪些部分才能正确起作用,将大大提高产生针对这些蛋白质的新型疗法和药物的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Priest其他文献
Michael Priest的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Priest', 18)}}的其他基金
Allostery and voltage sensing of membrane proteins
膜蛋白的变构和电压传感
- 批准号:
8721494 - 财政年份:2012
- 资助金额:
$ 4.22万 - 项目类别:
Allostery and voltage sensing of membrane proteins
膜蛋白的变构和电压传感
- 批准号:
8580181 - 财政年份:2012
- 资助金额:
$ 4.22万 - 项目类别:
相似国自然基金
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 4.22万 - 项目类别:
Decoding the functional pleiotropy of IL-20Rβ ligands in inflammation and tumorigenesis
解码 IL-20Rβ 配体在炎症和肿瘤发生中的功能多效性
- 批准号:
10350447 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Planning Study for the Development of Sigma 2 ligands as Analgesics
Sigma 2 配体镇痛药开发规划研究
- 批准号:
10641500 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
A novel role of cholesterol and SR-BI in adipocyte biology
胆固醇和 SR-BI 在脂肪细胞生物学中的新作用
- 批准号:
10733720 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别:
Broadly neutralizing SARS-CoV-2 peptidic knobs
广泛中和 SARS-CoV-2 肽旋钮
- 批准号:
10735902 - 财政年份:2023
- 资助金额:
$ 4.22万 - 项目类别: