Bioinstructive Scaffolds for Potent and Affordable CAR-T Cell Therapy Against Brain Tumors
用于有效且经济实惠的针对脑肿瘤的 CAR-T 细胞疗法的生物指导支架
基本信息
- 批准号:10800468
- 负责人:
- 金额:$ 58.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AftercareAlginatesAntibodiesAntigensB lymphoid malignancyBiocompatible MaterialsBloodBlood - brain barrier anatomyBrainBrain NeoplasmsCAR T cell therapyCD276 geneCD28 geneCellsClinicClinicalClinical TrialsClinical Trials DesignDataDevelopmentDiseaseDisease ProgressionDoseEncapsulatedEngraftmentExcisionGenerationsGlioblastomaGoalsImmunologicsImmunosuppressionImmunotherapyImplantInfusion proceduresInterleukin-2InterleukinsIntraventricularKineticsLiquid substanceMalignant neoplasm of brainMediatingMedicalMethodsModalityModelingNatureNon-Hodgkin&aposs LymphomaOperative Surgical ProceduresOrganPatient IsolationPatientsPeripheral Blood Mononuclear CellPhenotypePreparationPrimary Brain NeoplasmsProliferatingPropertyPublic HealthPublishingRadiation therapyRecurrenceRecurrent tumorResectedRetroviral VectorRetroviridaeRheologyRouteSolidSolid NeoplasmSpeedStructureSurgically-Created Resection CavitySwellingSymptomsT cell infiltrationT-Cell ActivationT-LymphocyteTechnologyTestingTherapeuticTimeToxic effectTranslatingTranslationsTreatment EfficacyViralVirusbiomaterial compatibilitybioscaffoldcellular transductionchimeric antigen receptorchimeric antigen receptor T cellsclinical applicationclinical translationcostdensityefficacy evaluationengineered T cellsimplantationimprovedin vivoinnovationmanufacturemanufacturing processmultidisciplinaryneurosurgeryoverexpressionpatient populationpre-clinicalpreclinical trialpreventresponsescaffoldsuccesstechnology platformtemozolomidetherapeutic targettooltumortumor progressionventricular system
项目摘要
PROJECT SUMMARY
Glioblastoma multiforme (GBM) is a fatal and difficult to treat brain tumor with a dismal median survival of less
than 2 years. Standard therapy consists of surgical tumor resection, radiotherapy, and temozolomide, which only
delay tumor recurrence. Recent success of CAR T cell therapy against Non-Hodgkin’s Lymphomas have gener-
ated significant excitement for the application of CAR T cells in GBM and several clinical trials have demonstrated
efficacy of CAR T cells in patients with GBM. However, both immunosuppression and the blood brain barrier act
as major impediments limiting CAR T cell efficacy in glioblastoma. Preclinical trials with localized administration
for CAR T cells via intratumoral or intraventricular routes enhance CAR T cell infiltration to brain tumor and
outperforms i.v. infusions. With locoregional control, CAR T cells are infused into the resected tumor cavity,
followed by repeated infusions into the ventricular system. Multiple administrations are necessary to maintain a
larger dose of CAR T cells without causing toxicity and to enhance persistence of functional CAR T cells over a
longer time. However, this repetitive dosing is a major obstacle to clinical translation of CAR T cells against GBM.
CAR T cell manufacturing takes weeks and carries high costs - ~$500,000 per dose. The long manufacturing
time creates delays of weeks to months to infuse CAR T cells to patients with rapidly progressing disease.
Additionally, lengthy ex vivo manipulations create CAR T cells with heterogeneous composition and terminal
differentiation, limiting their engraftment and persistence. Taken together, the many shortfalls of current CAR T
cell manufacturing urgently demand development of innovative tools to reduce manufacturing time and provide
optimal CAR T cell phenotype and distribution. In this proposal, we describe the application of Multifunctional
Alginate Scaffold for T cell Engineering and Release (MASTER) for use in GBM. MASTER will be implanted in
the surgical cavity of GBM to generate and release CAR T cells in vivo with improved efficacy and persistence.
Based on significant published and preliminary data, we show that MASTER provides bio-instructive ques to
activate, transduce, expand, and release fully functional CAR T cells in vivo. The scaffold includes anchored
activating antibodies and interleukins to guarantee T cell activation and proliferation. Scaffold macroporosity
facilitates homogeneous distribution of T cells, creates an interface for interaction between viruses and T cells,
and enables in vivo release of fully functional CAR T cells. MASTER reduces CAR T manufacturing times from
weeks to a single day, substantially reducing costs. We demonstrate in preliminary data and propose further that
MASTER seeded with naïve PBMCs and anti-B7H3 CAR-encoding retrovirus will be implanted in the resection
cavity of a brain tumor. B7H3 is overexpressed in brain tumors and serves as a promising therapeutic target for
CAR T cell therapy. This approach could have enormous clinical impact by significantly reducing therapy costs
and dramatically expanding the patient population benefiting from CAR T cell therapy. These studies will provide
a foundational technology platform for CAR T cell manufacturing and promote widespread patient access.
项目概要
多形性胶质母细胞瘤 (GBM) 是一种致命且难以治疗的脑肿瘤,中位生存期很低
标准治疗包括手术肿瘤切除、放疗和替莫唑胺,仅此而已。
最近,CAR T 细胞疗法在治疗非霍奇金淋巴瘤方面取得了成功。
CAR T 细胞在 GBM 中的应用引起了极大的兴奋,多项临床试验已经证明
CAR T 细胞对 GBM 患者的疗效然而,免疫抑制和血脑屏障都会起作用。
作为限制 CAR T 细胞在胶质母细胞瘤中疗效的主要障碍。
CAR T 细胞通过肿瘤内或脑室内途径增强 CAR T 细胞对脑肿瘤的浸润,
通过局部控制,将 CAR T 细胞注入切除的肿瘤腔中,效果优于静脉输注。
随后需要重复输注到心室系统中以维持。
更大剂量的 CAR T 细胞不会引起毒性,并增强功能性 CAR T 细胞的持久性
然而,这种重复给药是针对 GBM 的 CAR T 细胞临床转化的主要障碍。
CAR T 细胞的制造需要数周时间,并且成本高昂——每剂约 500,000 美元。
向疾病快速进展的患者输注 CAR T 细胞的时间会导致数周至数月的延迟。
此外,长时间的离体操作创造出具有异质成分和末端的 CAR T 细胞。
综上所述,当前 CAR T 存在许多缺陷。
电池制造迫切需要开发创新工具来缩短制造时间并提供
最佳 CAR T 细胞表型和分布 在本提案中,我们描述了多功能的应用。
用于 GBM 的 T 细胞工程和释放藻酸盐支架 (MASTER) 将被植入到 GBM 中。
GBM 的手术腔在体内生成和释放 CAR T 细胞,具有更高的功效和持久性。
根据已发表的重要数据和初步数据,我们表明 MASTER 提供了生物指导性问题
该支架包括锚定的体内激活、转导、扩增和释放功能齐全的 CAR T 细胞。
激活抗体和白细胞介素以保证 T 细胞活化和增殖。
促进 T 细胞的均匀分布,创建病毒和 T 细胞之间相互作用的界面,
并能够在体内释放功能齐全的 CAR T 细胞,从而缩短 CAR T 的制造时间。
我们在初步数据中证明了这一点,并进一步提出:
接种初始 PBMC 和抗 B7H3 CAR 编码逆转录病毒的 MASTER 将被植入切除区域
B7H3 在脑肿瘤中过度表达,可作为一个有希望的治疗靶点。
这种方法可以显着降低治疗成本,从而产生巨大的临床影响。
这些研究将显着扩大受益于 CAR T 细胞疗法的患者群体。
CAR T 细胞制造的基础技术平台,并促进广泛的患者获取。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pritha Agarwalla其他文献
Pritha Agarwalla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
用于肥厚型心肌病介入治疗的凝血酶-海藻酸盐复合微球消融剂制备机制及其作用机制研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
组织工程用氧化海藻酸盐/聚丙烯酰胺互穿网络均相凝胶的构建、结构与性能研究
- 批准号:
- 批准年份:2019
- 资助金额:41 万元
- 项目类别:地区科学基金项目
金属离子诱导海藻酸盐凝胶多尺度微观结构及外场下的演变机制
- 批准号:51803101
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于两亲性海藻酸盐的载药乳液的微观机制和多尺度模拟
- 批准号:21706045
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
3D打印三相一体化支架缓释DMOG激活HIF-1α信号通路治疗骨软骨缺损
- 批准号:51673212
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
MASTER Scaffolds for Rapid, Single-Step Manufacture and Prototyping of CAR-T cells
用于快速、单步制造 CAR-T 细胞和原型制作的 MASTER 支架
- 批准号:
10713795 - 财政年份:2023
- 资助金额:
$ 58.8万 - 项目类别:
Immunomodulatory biomaterial to enhancing T-cell responses to triple negative breast cancer
免疫调节生物材料可增强 T 细胞对三阴性乳腺癌的反应
- 批准号:
10699815 - 财政年份:2023
- 资助金额:
$ 58.8万 - 项目类别:
Extracellular Matrix Impacts Angiogenesis and Growth Plate Repair
细胞外基质影响血管生成和生长板修复
- 批准号:
10668056 - 财政年份:2023
- 资助金额:
$ 58.8万 - 项目类别:
Immunomodulatory biomaterial to enhancing T-cell responses to triple negative breast cancer
免疫调节生物材料可增强 T 细胞对三阴性乳腺癌的反应
- 批准号:
10699815 - 财政年份:2023
- 资助金额:
$ 58.8万 - 项目类别:
Enabling Subcutaneous Delivery of Therapeutic Monoclonal Antibodies via Hydrogel Microparticles
通过水凝胶微粒皮下输送治疗性单克隆抗体
- 批准号:
10761250 - 财政年份:2023
- 资助金额:
$ 58.8万 - 项目类别: