Bioinstructive Scaffolds for Potent and Affordable CAR-T Cell Therapy Against Brain Tumors

用于有效且经济实惠的针对脑肿瘤的 CAR-T 细胞疗法的生物指导支架

基本信息

项目摘要

PROJECT SUMMARY Glioblastoma multiforme (GBM) is a fatal and difficult to treat brain tumor with a dismal median survival of less than 2 years. Standard therapy consists of surgical tumor resection, radiotherapy, and temozolomide, which only delay tumor recurrence. Recent success of CAR T cell therapy against Non-Hodgkin’s Lymphomas have gener- ated significant excitement for the application of CAR T cells in GBM and several clinical trials have demonstrated efficacy of CAR T cells in patients with GBM. However, both immunosuppression and the blood brain barrier act as major impediments limiting CAR T cell efficacy in glioblastoma. Preclinical trials with localized administration for CAR T cells via intratumoral or intraventricular routes enhance CAR T cell infiltration to brain tumor and outperforms i.v. infusions. With locoregional control, CAR T cells are infused into the resected tumor cavity, followed by repeated infusions into the ventricular system. Multiple administrations are necessary to maintain a larger dose of CAR T cells without causing toxicity and to enhance persistence of functional CAR T cells over a longer time. However, this repetitive dosing is a major obstacle to clinical translation of CAR T cells against GBM. CAR T cell manufacturing takes weeks and carries high costs - ~$500,000 per dose. The long manufacturing time creates delays of weeks to months to infuse CAR T cells to patients with rapidly progressing disease. Additionally, lengthy ex vivo manipulations create CAR T cells with heterogeneous composition and terminal differentiation, limiting their engraftment and persistence. Taken together, the many shortfalls of current CAR T cell manufacturing urgently demand development of innovative tools to reduce manufacturing time and provide optimal CAR T cell phenotype and distribution. In this proposal, we describe the application of Multifunctional Alginate Scaffold for T cell Engineering and Release (MASTER) for use in GBM. MASTER will be implanted in the surgical cavity of GBM to generate and release CAR T cells in vivo with improved efficacy and persistence. Based on significant published and preliminary data, we show that MASTER provides bio-instructive ques to activate, transduce, expand, and release fully functional CAR T cells in vivo. The scaffold includes anchored activating antibodies and interleukins to guarantee T cell activation and proliferation. Scaffold macroporosity facilitates homogeneous distribution of T cells, creates an interface for interaction between viruses and T cells, and enables in vivo release of fully functional CAR T cells. MASTER reduces CAR T manufacturing times from weeks to a single day, substantially reducing costs. We demonstrate in preliminary data and propose further that MASTER seeded with naïve PBMCs and anti-B7H3 CAR-encoding retrovirus will be implanted in the resection cavity of a brain tumor. B7H3 is overexpressed in brain tumors and serves as a promising therapeutic target for CAR T cell therapy. This approach could have enormous clinical impact by significantly reducing therapy costs and dramatically expanding the patient population benefiting from CAR T cell therapy. These studies will provide a foundational technology platform for CAR T cell manufacturing and promote widespread patient access.
项目概要 多形性胶质母细胞瘤 (GBM) 是一种致命且难以治疗的脑肿瘤,中位生存期很低 标准治疗包括手术肿瘤切除、放疗和替莫唑胺,仅此而已。 最近,CAR T 细胞疗法在治疗非霍奇金淋巴瘤方面取得了成功。 CAR T 细胞在 GBM 中的应用引起了极大的兴奋,多项临床试验已经证明 CAR T 细胞对 GBM 患者的疗效然而,免疫抑制和血脑屏障都会起作用。 作为限制 CAR T 细胞在胶质母细胞瘤中疗效的主要障碍。 CAR T 细胞通过肿瘤内或脑室内途径增强 CAR T 细胞对脑肿瘤的浸润, 通过局部控制,将 CAR T 细胞注入切除的肿瘤腔中,效果优于静脉输注。 随后需要重复输注到心室系统中以维持。 更大剂量的 CAR T 细胞不会引起毒性,并增强功能性 CAR T 细胞的持久性 然而,这种重复给药是针对 GBM 的 CAR T 细胞临床转化的主要障碍。 CAR T 细胞的制造需要数周时间,并且成本高昂——每剂约 500,000 美元。 向疾病快速进展的患者输注 CAR T 细胞的时间会导致数周至数月的延迟。 此外,长时间的离体操作创造出具有异质成分和末端的 CAR T 细胞。 综上所述,当前 CAR T 存在许多缺陷。 电池制造迫切需要开发创新工具来缩短制造时间并提供 最佳 CAR T 细胞表型和分布 在本提案中,我们描述了多功能的应用。 用于 GBM 的 T 细胞工程和释放藻酸盐支架 (MASTER) 将被植入到 GBM 中。 GBM 的手术腔在体内生成和释放 CAR T 细胞,具有更高的功效和持久性。 根据已发表的重要数据和初步数据,我们表明 MASTER 提供了生物指导性问题 该支架包括锚定的体内激活、转导、扩增和释放功能齐全的 CAR T 细胞。 激活抗体和白细胞介素以保证 T 细胞活化和增殖。 促进 T 细胞的均匀分布,创建病毒和 T 细胞之间相互作用的界面, 并能够在体内释放功能齐全的 CAR T 细胞,从而缩短 CAR T 的制造时间。 我们在初步数据中证明了这一点,并进一步提出: 接种初始 PBMC 和抗 B7H3 CAR 编码逆转录病毒的 MASTER 将被植入切除区域 B7H3 在脑肿瘤中过度表达,可作为一个有希望的治疗靶点。 这种方法可以显着降低治疗成本,从而产生巨大的临床影响。 这些研究将显着扩大受益于 CAR T 细胞疗法的患者群体。 CAR T 细胞制造的基础技术平台,并促进广泛的患者获取。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pritha Agarwalla其他文献

Pritha Agarwalla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

组织工程用氧化海藻酸盐/聚丙烯酰胺互穿网络均相凝胶的构建、结构与性能研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    41 万元
  • 项目类别:
    地区科学基金项目
金属离子诱导海藻酸盐凝胶多尺度微观结构及外场下的演变机制
  • 批准号:
    51803101
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于两亲性海藻酸盐的载药乳液的微观机制和多尺度模拟
  • 批准号:
    21706045
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
3D打印三相一体化支架缓释DMOG激活HIF-1α信号通路治疗骨软骨缺损
  • 批准号:
    51673212
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

MASTER Scaffolds for Rapid, Single-Step Manufacture and Prototyping of CAR-T cells
用于快速、单步制造 CAR-T 细胞和原型制作的 MASTER 支架
  • 批准号:
    10713795
  • 财政年份:
    2023
  • 资助金额:
    $ 58.8万
  • 项目类别:
Immunomodulatory biomaterial to enhancing T-cell responses to triple negative breast cancer
免疫调节生物材料可增强 T 细胞对三阴性乳腺癌的反应
  • 批准号:
    10699815
  • 财政年份:
    2023
  • 资助金额:
    $ 58.8万
  • 项目类别:
Extracellular Matrix Impacts Angiogenesis and Growth Plate Repair
细胞外基质影响血管生成和生长板修复
  • 批准号:
    10668056
  • 财政年份:
    2023
  • 资助金额:
    $ 58.8万
  • 项目类别:
Immunomodulatory biomaterial to enhancing T-cell responses to triple negative breast cancer
免疫调节生物材料可增强 T 细胞对三阴性乳腺癌的反应
  • 批准号:
    10699815
  • 财政年份:
    2023
  • 资助金额:
    $ 58.8万
  • 项目类别:
Enabling Subcutaneous Delivery of Therapeutic Monoclonal Antibodies via Hydrogel Microparticles
通过水凝胶微粒皮下输送治疗性单克隆抗体
  • 批准号:
    10761250
  • 财政年份:
    2023
  • 资助金额:
    $ 58.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了