Substrate Stiffness, Topography, and TRPV4 in AF Mechanotransduction
AF 机械传导中的基底刚度、形貌和 TRPV4
基本信息
- 批准号:10797825
- 负责人:
- 金额:$ 9.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgonistArchitectureAreaCell physiologyCellsCuesDataDevelopmentDiseaseDisease ProgressionEnzyme-Linked Immunosorbent AssayEnzymesExtracellular MatrixFailureFeedbackGoalsHealthIntervertebral disc structureIon ChannelKnowledgeLow Back PainMechanical StimulationMechanicsMechanoreceptorsPeriodicityPlayProcessResearchRoleSlipped DiskSpinalStretchingSubstrate InteractionTRP channelTissue EngineeringTissuesVertebral columnWestern Blottingcell behaviorcell typedesigninnovationinterestmechanical signalmechanotransductionnew therapeutic targetpharmacologicregenerative approachresponsetooltranscriptome sequencing
项目摘要
SUMMARY
Over the past decade(s), research has highlighted that substrate stiffness and architecture/topography can be
recognized by cells and serve as mechanical and topographical cues that ultimately drive cell behavior through
mechanoreceptors. Substrate changes can also affect the mechanical stimulation of cells and thus their
response to loading. These cell responses are largely governed through mechanosensitive ion channels, such
as the transient receptor potential (TRP) channels. TRPV4 is of specific interest as its activation and expression
can be affected by matrix stiffness and topography. Furthermore, its activation controls extracellular matrix
(ECM) synthesis, matrix-degrading enzyme expression, and ECM remodeling in various cell types.
The annulus fibrosus (AF), the outer area of the intervertebral disc (IVD), is a mechanosensitive tissue in which
topographical and mechanical cues change during degeneration, thus likely affecting cell fate, cellular activity,
and disease progression. The AF plays a crucial role in the development of
low back pain as its structural failure
can lead to IVD
herniation.
Surprisingly, only very few studies have thus far investigated cell-substrate
interactions in AF cells and no data exists on the relevance of substrate stiffness/topography on TRPV4 activation
in AF cells. It is also unknown whether TRPV4 regulates ECM synthesis/remodeling in the AF, which would, in
turn, affect its activation and hence create a crucial feedback loop.
Our long-term goal is to reveal the relevance of cell-substrate processes in IVD health and disease and to use
this knowledge in the development of regenerative approaches. Specifically, this project aims to: (1) Determine
the relevance of substrate stiffness on TRPV4 activation in AF cells in response to (a) a pharmacological TRPV4
agonist and (b) cyclic stretching. (2) Determine the relevance of substrate topography on TRPV4 activation in
AF cells in response to (a) a pharmacological TRPV4 agonist and (b) cyclic stretching. (3) Determine the
importance of TRPV4 activation in AF cells in regulating ECM synthesis and remodeling
The proposed project will use an innovative design of stretching chambers that allows investigating the
integrative role of substrate cues (stiffness, topography) and mechanical stimulation in modulating cell function
and fate. TRPV4 will be activated by specific agonists or stretching upon seeding in these chambers and cell
responses will be determined by qPCR, ELISA, and Western Blot for targets selected based on RNA-seq data.
Furthermore, ECM synthesis and remodeling following TRPV4 activation will be evaluated.
This will be the first study to investigate TRPV4 in the context of substrate stiffness and topography in AF cells.
As the developed tools will also apply to other research areas, I can help advance the fundamental understanding
of mechanotransduction processes in health and disease. The gained knowledge will be applicable in tissue
engineering and support the identification of new drug targets related to dysregulated mechanotransduction.
概括
在过去的十年中,研究强调基材的刚度和结构/形貌可以
被细胞识别并作为机械和地形线索,最终驱动细胞行为
机械感受器。基质的变化也会影响细胞的机械刺激,从而影响它们的活性。
对加载的响应。这些细胞反应很大程度上是通过机械敏感离子通道控制的,例如
作为瞬时受体电位(TRP)通道。 TRPV4 由于其激活和表达而受到特别关注
可能受到基体刚度和地形的影响。此外,它的激活控制细胞外基质
(ECM) 合成、基质降解酶表达以及各种细胞类型中的 ECM 重塑。
纤维环 (AF) 是椎间盘 (IVD) 的外部区域,是一种机械敏感组织,其中
变性过程中形貌和机械线索发生变化,从而可能影响细胞命运、细胞活动,
和疾病进展。 AF在发展中起着至关重要的作用
腰痛是其结构性故障
可能导致 IVD
疝气。
令人惊讶的是,迄今为止只有极少数研究调查了细胞基质
AF 细胞中的相互作用,并且没有关于基质硬度/形貌与 TRPV4 激活的相关性的数据
在 AF 细胞中。目前还不清楚 TRPV4 是否调节 AF 中的 ECM 合成/重塑,这会在
转动,影响其激活,从而创建一个关键的反馈循环。
我们的长期目标是揭示细胞基质过程在 IVD 健康和疾病中的相关性,并利用
这些知识用于再生方法的开发。具体而言,该项目旨在: (1) 确定
基质刚度与 AF 细胞中 TRPV4 激活的相关性,以响应 (a) 药理学 TRPV4
激动剂和(b)循环拉伸。 (2) 确定底物形貌对 TRPV4 激活的相关性
AF 细胞对 (a) 药理学 TRPV4 激动剂和 (b) 循环拉伸的反应。 (3) 确定
AF 细胞中 TRPV4 激活在调节 ECM 合成和重塑中的重要性
拟议的项目将使用拉伸室的创新设计,可以研究
基质线索(硬度、形貌)和机械刺激在调节细胞功能中的综合作用
和命运。 TRPV4 将被特定激动剂激活或在这些室和细胞中接种后拉伸
将通过 qPCR、ELISA 和 Western Blot 确定基于 RNA-seq 数据选择的靶标的反应。
此外,还将评估 TRPV4 激活后的 ECM 合成和重塑。
这将是第一项在 AF 细胞的基底刚度和形貌背景下研究 TRPV4 的研究。
由于开发的工具也将适用于其他研究领域,我可以帮助推进基本理解
健康和疾病中的机械传导过程。所获得的知识将适用于组织
设计并支持识别与机械转导失调相关的新药物靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karin Wuertz-Kozak其他文献
Karin Wuertz-Kozak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karin Wuertz-Kozak', 18)}}的其他基金
Extracellular vesicles produced by CRISPR-activated MSCs: A potential therapy for degenerative disc disease
CRISPR 激活的 MSC 产生的细胞外囊泡:退行性椎间盘疾病的潜在疗法
- 批准号:
10733029 - 财政年份:2023
- 资助金额:
$ 9.8万 - 项目类别:
Substrate Stiffness, Topography, and TRPV4 in AF Mechanotransduction
AF 机械传导中的基底刚度、形貌和 TRPV4
- 批准号:
10689826 - 财政年份:2022
- 资助金额:
$ 9.8万 - 项目类别:
相似国自然基金
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水体中β2-肾上腺素受体激动剂(PPCPs)间接光降解机理的量子化学与实验研究
- 批准号:22306084
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TRPV4/SKCa信号轴在AMPK激动剂抑制微小动脉舒张作用中的机制研究
- 批准号:82304584
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
- 批准号:82341043
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
The Thromboxane-Prostanoid Receptor in Radiation-Induced Pulmonary Fibrosis
辐射诱发肺纤维化中的血栓素-前列腺素受体
- 批准号:
10734570 - 财政年份:2023
- 资助金额:
$ 9.8万 - 项目类别:
Mapping brain-wide opioid actions by profiling neuronal activities and in vivo cellular target engagement
通过分析神经元活动和体内细胞靶标参与来绘制全脑阿片类药物作用
- 批准号:
10775623 - 财政年份:2023
- 资助金额:
$ 9.8万 - 项目类别:
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 9.8万 - 项目类别:
The impact of stress-induced DNA breaks on chromatin structure, gene activity, and neuron function
应激诱导的 DNA 断裂对染色质结构、基因活性和神经元功能的影响
- 批准号:
10655982 - 财政年份:2023
- 资助金额:
$ 9.8万 - 项目类别:
Medications for opioid use disorder differentially modulate intrinsically photosensitive retinal ganglion cell function, sleep, and circadian rhythms: implications for treatment
治疗阿片类药物使用障碍的药物差异调节本质光敏性视网膜神经节细胞功能、睡眠和昼夜节律:对治疗的影响
- 批准号:
10783274 - 财政年份:2023
- 资助金额:
$ 9.8万 - 项目类别: