Alternative Splicing Modulates the Activity of CaV3.1. an Ion Channel Gene Involved in Spinocerebellar Ataxia, Epilepsy, and Autism Spectrum Disorders
选择性剪接调节 CaV3.1 的活性。
基本信息
- 批准号:10797338
- 负责人:
- 金额:$ 9.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-12 至 2025-09-11
- 项目状态:未结题
- 来源:
- 关键词:Absence EpilepsyAction PotentialsAffectAlternative SplicingBindingBiological ProcessBiologyBiomedical ResearchBiophysicsBipolar DisorderBrainC-terminalCACNA1G geneCalciumCalcium ChannelCalmodulinCardiacCell membraneCellsCellular biologyCentral Nervous SystemClinicalDataDefectDiseaseEpilepsyEventExonsFunctional disorderGene ExpressionGenesGoalsHormonalHumanIon ChannelIon Channel GatingKineticsKnockout MiceLearningLocationMalignant hyperpyrexia due to anesthesiaMapsMembraneMembrane PotentialsMessenger RNAMethodologyMigraineMolecularMolecular BiologyMuscleMutateMutationNeuronsPathologyPatientsPermeabilityPhysiologicalPhysiological ProcessesPhysiologyPlayPotassium ChannelPropertyProteinsRNARNA SplicingRNA-Binding ProteinsRegulationRoleShapesSignal Transduction PathwaySpinocerebellar AtaxiasStructureTestingThalamic structureTimothy syndromeTissuesVariantautism spectrum disorderbioinformatics pipelinebiophysical propertiescareercell typedesigndifferential expressionexperimental studygraduate studentnervous system disorderneurotransmitter releasenovel therapeutic interventionsensorsuccesstranscriptome sequencingundergraduate studentvoltage
项目摘要
PROJECT SUMMARY/ABSTRACT
The central nervous system comprises the tissues and cells with the highest rate of alternative splicing in the
body, and RNA-binding proteins play a major functional role in neurons. To better understand the contribution
of RNA splicing to nerve cell biology, and to help elucidate the function that splicing plays in neuron physiology
and neurologic disorders it is necessary to characterize how the inclusion or skipping of specific exons
modulates the physiological properties of molecules — such as ion channels — that are critical for neuronal
function, and to characterize how these splicing events are regulated at the cellular and molecular level. Our
long-term goal is to understand the molecular mechanisms regulating protein-RNA networks that control
alternative splicing in the brain, and how they relate to the biology of neurons and to disorders of the nervous
system. The objective of this proposal is to study how alternative splicing of CaV3.1, a voltage-gated Calcium
channel that significantly contributes to the regulation of cell membrane excitability — particularly in muscle
and neurons — and that is mutated in patients with spinocerebellar ataxia-42 (SCA42) is regulated in different
neuron cell types, and how it may contributes to the modulation of channel activity. The central hypothesis of
this proposal is that neuronal cell type-specific alternative splicing of CaV3.1 at the C-terminus shapes the
physiological properties of this voltage-gated ion channel.
In Aim 1 we will test the hypothesis that CaV3.1 alternatively spliced exons are differentially expressed in
different neuronal cell types in the brain. To tackle this question, we have developed an RNAseq-based
bioinformatics pipeline that will allow us to interrogate differential splicing between neuronal subclasses defined
at different hierarchical levels. This methodology will not only provide a snapshot of the alternative splicing
landscape of CaV3.1 in different neuronal subclasses in the brain, but it will also allow us to generate
predictions on how these alternative splicing events are regulated. In Aim 2 we will test the hypothesis that
alternative splicing at the C-terminus significantly contributes to the regulation of the physiological activity of
this ion channel. Since several disease-associated mutations in CaV3.1 map to alternatively spliced exons,
understanding how alternative splicing modulates channel activity is critical.
Since patients with CaV3.1-associated pathologies display defects in Calcium current properties,
understanding how alternative splicing may modulate the biological functions of CaV3.1 and how this
modulation is regulated, may have broad and significant clinical implications in spinocerebellar ataxia, epilepsy,
and autism spectrum disorders, and it may inform the design of novel therapeutic strategies. Moreover, this
project will provide both undergraduate and graduate students with a unique opportunity to learn the
fundamentals of molecular biology and biomedical research and help them in their pursue of a career in the
biomedical field.
项目概要/摘要
中枢神经系统由选择性剪接率最高的组织和细胞组成。
为了更好地理解其贡献,RNA 结合蛋白在神经元中发挥着重要的功能作用。
RNA剪接对神经细胞生物学的影响,并帮助阐明剪接在神经元生理学中的功能
和神经系统疾病,有必要描述特定外显子的包含或跳过如何
调节分子的生理特性(例如离子通道),这对神经元至关重要
功能,并表征这些剪接事件如何在细胞和分子水平上受到调节。
长期目标是了解调节蛋白质-RNA 网络的分子机制,这些网络控制着
大脑中的选择性剪接,以及它们与神经元生物学和神经疾病的关系
该提案的目的是研究CaV3.1(一种电压门控钙)的选择性剪接。
通道对细胞膜兴奋性的调节有显着贡献——特别是在肌肉中
和神经元——脊髓小脑共济失调 42 (SCA42) 患者中发生突变,在不同的环境中受到调节
神经元细胞类型,以及它如何促进通道活动的调节。
该提议认为 CaV3.1 在 C 末端的神经细胞类型特异性选择性剪接塑造了
该电压门控离子通道的生理特性。
在目标 1 中,我们将检验 CaV3.1 选择性剪接外显子差异表达的假设
为了解决这个问题,我们开发了一种基于 RNAseq 的方法。
生物信息学管道将允许我们询问定义的神经子类之间的差异剪接
这种方法不仅提供了选择性剪接的快照。
CaV3.1 在大脑不同神经亚类中的景观,但它也将使我们能够生成
关于如何调控这些选择性剪接事件的预测在目标 2 中,我们将检验以下假设。
C 末端的选择性剪接显着有助于调节生理活性
由于 CaV3.1 中的几个与疾病相关的突变映射到选择性剪接的外显子,
了解选择性剪接如何调节通道活动至关重要。
由于患有 CaV3.1 相关疾病的患者表现出钙电流特性缺陷,
了解选择性剪接如何调节 CaV3.1 的生物学功能以及这如何
调节受到调节,可能对脊髓小脑共济失调、癫痫、
和自闭症谱系障碍,它可以为新的治疗策略的设计提供信息。
该项目将为本科生和研究生提供独特的学习机会
分子生物学和生物医学研究的基础知识,并帮助他们追求职业生涯
生物医学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matteo Ruggiu其他文献
Matteo Ruggiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matteo Ruggiu', 18)}}的其他基金
Alternative Splicing Modulates the Activity of CaV3.1, an Ion Channel Gene Involved in Spinocerebellar Ataxia, Epilepsy, and Autism Spectrum Disorders.
选择性剪接调节 CaV3.1 的活性,CaV3.1 是一种与脊髓小脑共济失调、癫痫和自闭症谱系障碍有关的离子通道基因。
- 批准号:
10579415 - 财政年份:2022
- 资助金额:
$ 9.93万 - 项目类别:
Investigating the Mechanism Regulating Alternative Splicing of Neural Agin: A Novel Therapeutic Entry Point for Congenital Myasthenic Syndrome
研究调节神经Agin选择性剪接的机制:先天性肌无力综合征的新治疗切入点
- 批准号:
9098986 - 财政年份:2016
- 资助金额:
$ 9.93万 - 项目类别:
相似国自然基金
泛素E3连接酶接头蛋白SPOP控制离子通道KCNQ1蛋白稳定性影响心肌细胞复极化的机制研究
- 批准号:81800301
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
磁场对神经元动作电位产生与传导的影响
- 批准号:51507046
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
钙钟和膜钟对窦房结自律性的影响及与房性心律失常相互作用的机制
- 批准号:81271661
- 批准年份:2012
- 资助金额:69.0 万元
- 项目类别:面上项目
心脏再同步化治疗对失同步化心衰左心室电生理重构的影响
- 批准号:81100126
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
L型钙离子通道的不同亚型在生理状态和尼古丁成瘾状态下对于腹侧被盖区多巴胺细胞放电行为的影响及其机制
- 批准号:31000483
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Alternative Splicing Modulates the Activity of CaV3.1, an Ion Channel Gene Involved in Spinocerebellar Ataxia, Epilepsy, and Autism Spectrum Disorders.
选择性剪接调节 CaV3.1 的活性,CaV3.1 是一种与脊髓小脑共济失调、癫痫和自闭症谱系障碍有关的离子通道基因。
- 批准号:
10579415 - 财政年份:2022
- 资助金额:
$ 9.93万 - 项目类别:
Role of CACHD1 in the development of temporal lobe epilepsy and absence epilepsy
CACHD1 在颞叶癫痫和失神癫痫发生中的作用
- 批准号:
10448389 - 财政年份:2021
- 资助金额:
$ 9.93万 - 项目类别:
Role of CACHD1 in the development of temporal lobe epilepsy and absence epilepsy
CACHD1 在颞叶癫痫和失神癫痫发生中的作用
- 批准号:
10298252 - 财政年份:2021
- 资助金额:
$ 9.93万 - 项目类别:
Role of CACHD1 in the development of temporal lobe epilepsy and absence epilepsy
CACHD1 在颞叶癫痫和失神癫痫发生中的作用
- 批准号:
10298252 - 财政年份:2021
- 资助金额:
$ 9.93万 - 项目类别: