Deciphering the Endothelial Cell-Cardiomyocyte Crosstalk in LMNA Cardiomyopathy
破译 LMNA 心肌病中的内皮细胞-心肌细胞串扰
基本信息
- 批准号:10688257
- 负责人:
- 金额:$ 39.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAffectAnimal ModelAttentionBiomedical EngineeringCRISPR/Cas technologyCardiacCardiac MyocytesCardiomyopathiesCardiovascular PhysiologyCell CommunicationCell LineCellsChromatinChromosome MappingCoculture TechniquesCollaborationsCommunicationComplexComputational BiologyDataDilated CardiomyopathyDiseaseEndothelial CellsEnvironmentFamilyFunctional disorderGene DeletionGene ExpressionGenesGenomic DNAGenotypeGoalsHeartHeart DiseasesHeart TransplantationHeart failureHumanImpairmentIn VitroIndividualKineticsKnowledgeLamin Type ALigandsLovastatinMachine LearningMediatingModelingMolecularMorbidity - disease rateMutationNuclear EnvelopeOligonucleotidesOrganParacrine CommunicationPathogenesisPathogenicityPatientsPhenotypePositioning AttributeResearch ProposalsSignal TransductionSiteTechnologyTissue EngineeringTranslational ResearchVariantWingWorkZebrafishcardiac tissue engineeringcell typeendothelial dysfunctionenv Gene Productsexperimental studyfamilial dilated cardiomyopathygene regulatory networkgenome editingheart functionimprovedin vivoinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinduced pluripotent stem cell technologyinsightinterdisciplinary approachknock-downlamin Closs of functionmechanical propertiesmortalitynext generation sequencingnovelparacrinepharmacologicpromoterreceptorsingle cell technologysingle-cell RNA sequencingsoundstem cell biologytooltranscription factortranslational medicine
项目摘要
Project Summary/Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure and the leading reason for heart
transplantation. Major gaps exist in our understanding of the pathophysiology of DCM and mutations in the
gene that encodes the nuclear envelope proteins lamin A and C (LMNA) are considered to be the most
common cause of DCM. However, the molecular mechanisms that underlie “cardiolaminopathy” remain
elusive, and it is unknown why mutations in this ubiquitously expressed gene have such a disproportionate
effect on the heart. Using induced pluripotent stem cell (iPSCs)-derived endothelial cells (iPSC-ECs), we
recently studied a family affected by DCM due to a frameshift variant in LMNA, which showed endothelial
dysfunction (Sayed et al. Science Translational Medicine, 2020). This EC dysfunction could be reversed by
upregulating Krüppel-like Factor 2 (KLF2) by treatment of iPSC-ECs with a subset of statins, including
lovastatin. Importantly, this improvement in EC dysfunction had a positive effect on co-cultured iPSC-
cardiomyocytes (iPSC-CMs) from cardiolaminopathy patients, indicating an intricate crosstalk between the ECs
and CMs in LMNA cardiomyopathy.
Despite impressive progress, little attention has been given to the potential importance of cell-to-cell
signaling between ECs and CMs, despite the fact that ECs serve a paracrine function to enhance signaling in
CMs, especially in context to pharmacological stimulation. This knowledge gap impedes our comprehensive
understanding of organ dysfunction at a multi-cellular level. The overarching goal of our proposal is to use a
multidisciplinary approach that integrates human iPSCs, bioengineering tools, genome editing, and NGS to
gain novel insights into the pathogenesis of DCM. Using human iPSCs, we propose to decipher the impaired
cross-talk between ECs and CMs in LMNA cardiomyopathy and elucidate the beneficial class effects of statins
in improving the EC-CM signaling as a key factor in regulating cardiac function. We will pursue three specific
aims. In Aim 1: we will establish an experimental platform to study the genotype-phenotype association of
LMNA mutations on ECs and CMs. For this, we will recapitulate the EC-CM crosstalk in LMNA iPSC-derived
cells with 3D engineered heart tissues (EHTs). In Aim 2: we will decipher the mechanism of EC-CM crosstalk
in LMNA iPSC-derived EHTs using single-cell approaches (scRNA-seq and scATAC-seq). In Aim 3: we will
validate the key regulatory players of EC-CM crosstalk in LMNA cardiomyopathy by using CRISPR technology
and zebrafish animal model. We have provided compelling preliminary data to support the soundness of
our hypothesis-driven research proposal, and we are well positioned to achieve the project goals
within five years. If successful, our studies will provide a new paradigm for understanding the
pathogenesis and treatment of familial DCM.
项目概要/摘要
扩张型心肌病(DCM)是心力衰竭的主要原因,也是心脏病的主要原因
我们对 DCM 的病理生理学和突变的理解存在重大差距。
编码核膜蛋白核纤层蛋白 A 和 C (LMNA) 的基因被认为是最重要的。
然而,“心肌胺病”的分子机制仍然存在。
难以捉摸,并且尚不清楚为什么这个普遍表达的基因中的突变具有如此不成比例的
使用诱导多能干细胞 (iPSC) 衍生的内皮细胞 (iPSC-EC),我们研究了对心脏的影响。
最近研究了一个因 LMNA 移码变异而受到 DCM 影响的家庭,该变异显示内皮细胞
功能障碍(Sayed 等人,Science Translational Medicine,2020)。
通过用他汀类药物的子集治疗 iPSC-EC 来上调 Krüppel 样因子 2 (KLF2),包括
重要的是,EC 功能障碍的改善对共培养的 iPSC 具有积极作用。
来自心肌病患者的心肌细胞 (iPSC-CM),表明 EC 之间存在复杂的串扰
和 LMNA 心肌病中的 CM。
尽管取得了令人印象深刻的进展,但很少有人关注细胞间的潜在重要性
尽管 EC 具有旁分泌功能以增强 EC 和 CM 之间的信号传导
CM,特别是在药理刺激方面,这种知识差距阻碍了我们的全面了解。
在多细胞水平上理解器官功能障碍我们建议的总体目标是使用
整合人类 iPSC、生物工程工具、基因组编辑和 NGS 的多学科方法
我们建议使用人类 iPSC 来破译受损的 DCM 发病机制。
LMNA 心肌病中 EC 和 CM 之间的串扰并阐明他汀类药物的有益类别效应
在改善 EC-CM 信号传导作为调节心脏功能的关键因素方面,我们将追求三个具体目标。
目标1:我们将建立一个实验平台来研究基因型-表型关联。
EC 和 CM 上的 LMNA 突变为此,我们将概括 LMNA iPSC 衍生的 EC-CM 串扰。
目标 2:我们将破译 EC-CM 串扰的机制。
在 LMNA iPSC 衍生的 EHT 中,使用单细胞方法(scRNA-seq 和 scATAC-seq)在目标 3 中:我们将
利用 CRISPR 技术验证 LMNA 心肌病中 EC-CM 串扰的关键调控因子
我们提供了令人信服的初步数据来支持其合理性。
我们的假设驱动的研究提案,我们有能力实现项目目标
如果成功的话,我们的研究将在五年内提供一个新的范式来理解这一点。
家族性 DCM 的发病机制和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nazish Sayed其他文献
Nazish Sayed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nazish Sayed', 18)}}的其他基金
Unraveling the role of endothelium in chemotherapy-induced cardiotoxicity
揭示内皮在化疗引起的心脏毒性中的作用
- 批准号:
10543095 - 财政年份:2022
- 资助金额:
$ 39.42万 - 项目类别:
Unraveling the role of endothelium in chemotherapy-induced cardiotoxicity
揭示内皮在化疗引起的心脏毒性中的作用
- 批准号:
10340657 - 财政年份:2022
- 资助金额:
$ 39.42万 - 项目类别:
Deciphering the Endothelial Cell-Cardiomyocyte Crosstalk in LMNA Cardiomyopathy
破译 LMNA 心肌病中的内皮细胞-心肌细胞串扰
- 批准号:
10276748 - 财政年份:2021
- 资助金额:
$ 39.42万 - 项目类别:
Deciphering the Endothelial Cell-Cardiomyocyte Crosstalk in LMNA Cardiomyopathy
破译 LMNA 心肌病中的内皮细胞-心肌细胞串扰
- 批准号:
10851040 - 财政年份:2021
- 资助金额:
$ 39.42万 - 项目类别:
Modeling Endothelial Dysfunction in LMNA-related Dilated Cardiomyopathy
LMNA 相关扩张型心肌病内皮功能障碍的建模
- 批准号:
10078868 - 财政年份:2017
- 资助金额:
$ 39.42万 - 项目类别:
相似国自然基金
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
- 批准号:31900602
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Using cellular co-biosis and age programmable mice to derive a global interaction map of aging hallmarks
使用细胞共生和年龄可编程小鼠来得出衰老标志的全局相互作用图
- 批准号:
10721454 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Simultaneous mapping of somatic mosaicism and kb-resolution 3D genome in single cells.
单细胞中体细胞嵌合体和 kb 分辨率 3D 基因组的同时作图。
- 批准号:
10660575 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别:
Going from Genetic Associations to Identification of Causative Genes
从遗传关联到致病基因的识别
- 批准号:
10555812 - 财政年份:2023
- 资助金额:
$ 39.42万 - 项目类别: