SCH: AI-DOCTOR COLLABORATIVE MEDICAL DIAGNOSIS
SCH:AI-医生协同医疗诊断
基本信息
- 批准号:10688087
- 负责人:
- 金额:$ 21.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-22 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsArtificial IntelligenceCardiovascular systemCessation of lifeClassificationClinicalCognitiveCollaborationsComputer softwareComputer-Assisted DiagnosisCreativenessDetectionDiagnosisDiagnosticDiagnostic ErrorsDiagnostic radiologic examinationError SourcesEvaluationExpert SystemsFatigueGoalsHospitalsHumanInstitutionInstructionIntentionJointsKnowledgeLearningLung noduleMachine LearningMalignant NeoplasmsMalignant neoplasm of lungMeasuresMedicalMethodologyMethodsMissionModelingMonitorOutcomePathologicPerformancePrincipal InvestigatorProcessPsychological reinforcementPublic HealthPulmonary EmbolismRadiology SpecialtyResearch DesignRetrospective StudiesReverse engineeringScanningSystemSystems IntegrationThinkingThoracic RadiographyTimeUser-Computer InterfaceVisualWorkWorkloadartificial intelligence algorithmcancer diagnosiscomputer frameworkdesigndiagnostic accuracydistractiongazeimaging modalityimprovedinnovationiterative designmultidisciplinarymultimodalityneglectnext generationnovelradiologistsuccesstheoriesusabilityuser-friendlyvisual information
项目摘要
Recent retrospective studies show that radiology's diagnostic error rates did not decrease significantly over
the years. For example, missed lung cancer rates remain at 20-60% on chest radiography dependent on
study design. This error contributes to 40,000-80,000 deaths annually in U.S. hospitals. This project aims
to develop a computational framework for Al to collaborate with human radiologists on medical diagnosis
tasks. To achieve this goal, we divide the project into three Aims, where the first two focus on fundamental
theories, and the last one evaluates the proposed approaches on targeted applications.
Aim 1: Develop computational principles for optimal Al-radiologist interaction. This Aim will develop
a computational framework for guiding the interaction between radiologists and Al to achieve the best
possible diagnostic performance while minimizing the time burden. Our framework consists of the first
method for reverse-engineering radiologists' intention from the joint gaze and visual information based on
reinforcement learning. This Aim is the first to provide an integrated system with gaze sensing, deep
networks, and human radiologists. The knowledge from this Aim will fundamentally transform how one
would build collaborative medical diagnosis systems.
Aim 2: Design a user-friendly and minimally-interfering interface for radiologist-Al interaction. This
Aim addresses an essential question of designing a minimally interfering interface that allows human
radiologists to interact with Al models efficiently. Our proposed system combines an innovative "multimodal
thinking with audio and gaze" (MTAG) methodology with user-centered iterative design. The process will
result in a novel radiologist-Al collaborative interface that maximizes time efficiency while minimizing the
amount of distraction. The outcome of this Aim will shed light on design principles for systems involving
radiologists.
Aim 3: Evaluation Plan. This Aim evaluates the proposed approaches in Aim 1-2 on two clinically
important applications: i) Lung nodule detection and ii) pulmonary embolism. Lung cancer is the second
most common cancer, and pulmonary embolism is the third most common cause of cardiovascular death.
Studying how radiologists collaborate with Al to reduce diagnostic errors will lead to significant clinical
impacts.
RELEVANCE (See instructions):
Diagnostic errors contribute to 40,000-80,000 deaths annually in U.S. hospitals. This project combines
novel artificial intelligence (Al) algorithms, gaze monitoring software, and design principles to help doctors
minimize diagnostic errors due to cognitive and perceptual biases. The project's success will fundamentally
change how we design Al medical systems to increase diagnostic accuracy, save lives, reduce missed
cancer diagnoses, improve public health, and advance NCl's mission.
最近的回顾性研究表明,放射学的诊断错误率并没有显着下降
这些年。例如,胸部 X 线检查的肺癌漏诊率仍保持在 20-60%,具体取决于
研究设计。这一错误每年导致美国医院 40,000-80,000 人死亡。该项目旨在
为人工智能开发一个计算框架,以便与人类放射科医生合作进行医疗诊断
任务。为了实现这一目标,我们将该项目分为三个目标,其中前两个目标侧重于基本目标
理论,最后一个评估针对目标应用所提出的方法。
目标 1:开发最佳人工智能与放射科医生交互的计算原理。这个目标将发展
一个计算框架,用于指导放射科医生和人工智能之间的交互以实现最佳效果
可能的诊断性能,同时最大限度地减少时间负担。我们的框架包括第一个
基于联合凝视和视觉信息的放射科医生意图逆向工程方法
强化学习。该 Aim 是第一个提供具有凝视感应、深度感应的集成系统。
网络和人类放射科医生。这一目标的知识将从根本上改变一个人的方式
将建立协作医疗诊断系统。
目标 2:为放射科医生与人工智能交互设计一个用户友好且干扰最小的界面。这
Aim 解决了设计一个干扰最小的界面的基本问题,该界面允许人类
放射科医生与人工智能模型有效互动。我们提出的系统结合了创新的“多式联运”
用音频和凝视思考”(MTAG)方法论,以用户为中心的迭代设计。该过程将
产生了一种新颖的放射科医生-人工智能协作界面,可以最大限度地提高时间效率,同时最大限度地减少
分心量。该目标的结果将阐明涉及系统的设计原则
放射科医生。
目标 3:评估计划。该目标评估了目标 1-2 中提出的两个临床方法
重要应用:i) 肺结节检测和 ii) 肺栓塞。肺癌位居第二
最常见的癌症,肺栓塞是心血管死亡的第三大常见原因。
研究放射科医生如何与 AI 合作减少诊断错误将带来重大的临床意义
影响。
相关性(参见说明):
美国医院每年因诊断错误导致 40,000-80,000 人死亡。该项目结合了
新颖的人工智能 (Al) 算法、注视监测软件和设计原理可帮助医生
最大限度地减少由于认知和知觉偏差而导致的诊断错误。该项目的成功将从根本上
改变我们设计人工智能医疗系统的方式,以提高诊断准确性、挽救生命、减少漏诊
癌症诊断、改善公众健康并推进 NCl 的使命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hien Van Nguyen其他文献
A robust first-arrival picking workflow using convolutional and recurrent neural networks
使用卷积神经网络和循环神经网络的强大的首次到达拣选工作流程
- DOI:
10.1190/geo2019-0437.1 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:3.3
- 作者:
Pengyu Yuan;Shirui Wang;Wenyi Hu;Xuqing Wu;Jiefu Chen;Hien Van Nguyen - 通讯作者:
Hien Van Nguyen
Evaluating and Improving Domain Invariance in Contrastive Self-Supervised Learning by Extrapolating the Loss Function
通过外推损失函数来评估和改进对比自监督学习中的域不变性
- DOI:
10.1109/access.2023.3339775 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:3.9
- 作者:
Samira Zare;Hien Van Nguyen - 通讯作者:
Hien Van Nguyen
Time for a full digital approach in nephropathology: a systematic review of current artificial intelligence applications and future directions
是时候在肾脏病理学中采用全数字化方法了:对当前人工智能应用和未来方向的系统回顾
- DOI:
10.1007/s40620-023-01775-w - 发表时间:
2023-09-28 - 期刊:
- 影响因子:3.4
- 作者:
G. Cazzaniga;Mattia Rossi;A. Eccher;Ilaria Girolami;V. L’Imperio;Hien Van Nguyen;Jan U. Becker;María Gloria Bueno García;M. Sbaraglia;A. D. Dei Tos;G. Gambaro;F. Pagni - 通讯作者:
F. Pagni
Virtual Relay Selection in LTE-V: A Deep Reinforcement Learning Approach to Heterogeneous Data
LTE-V 中的虚拟中继选择:异构数据的深度强化学习方法
- DOI:
10.1109/access.2020.2997729 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:3.9
- 作者:
Xunsheng Du;Hien Van Nguyen;Chunxiao Jiang;Yong Li;F. Yu;Zhu Han - 通讯作者:
Zhu Han
Risk-Aware Machine Learning Classifier for Skin Lesion Diagnosis
- DOI:
10.3390/jcm8081241 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:3.9
- 作者:
Aryan Mobiny;Aditi Singh;Hien Van Nguyen - 通讯作者:
Hien Van Nguyen
Hien Van Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hien Van Nguyen', 18)}}的其他基金
SCH: AI-DOCTOR COLLABORATIVE MEDICAL DIAGNOSIS
SCH:AI-医生协同医疗诊断
- 批准号:
10592801 - 财政年份:2022
- 资助金额:
$ 21.87万 - 项目类别:
相似国自然基金
面向智能电网用户侧的智能优化调度和人工智能算法安全研究
- 批准号:62373297
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
人工智能算法嵌入街头官僚决策的行为效应及其认知触发机制研究
- 批准号:72304110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能算法辅助高通量纳米等离子芯片用于前列腺癌尿液外泌体多元标志物的检测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 21.87万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 21.87万 - 项目类别:
Early detection and risk of head and neck cancer through immune based spatial omics
通过基于免疫的空间组学早期发现头颈癌并降低风险
- 批准号:
10766467 - 财政年份:2023
- 资助金额:
$ 21.87万 - 项目类别:
Automated lung sound analysis to improve the clinical diagnosis of pulmonary tuberculosis in children
自动肺音分析提高儿童肺结核的临床诊断
- 批准号:
10717389 - 财政年份:2023
- 资助金额:
$ 21.87万 - 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 21.87万 - 项目类别: