Decoding natural protective mechanisms during diapause and longevity to counter aging

解码滞育和长寿期间的自然保护机制以对抗衰老

基本信息

项目摘要

Project Summary/Abstract Extremophiles—organisms that live in extreme environments—evolve unique adaptations for survival. Extreme adaptations are easier to measure and characterize than gradual phenotypes. Understanding the regulation of extreme phenotypes can reveal novel genes and strategies with the potential to bring significant health benefits to humans. The African turquoise killifish, Nothobranchius furzeri, is an extremophile for survival. This species lives in ephemeral ponds that completely dry up for up to 8 months each year. They have evolved two remarkable adaptations to survive in this harsh habitat: a compressed adult lifespan of only 4.5 months and a form of ‘suspended animation’, whereby embryos can enter diapause and subsist in the mud until the next rainy season. Diapause embryos already have complex organs and tissues, including muscle, a developing brain, a heart, and many complex cell types. They can survive in diapause for up to 3 years (~5 times longer than their adult lifespan) without any detectable trade-off for future life. Thus, diapause is a fascinating state where the aging clock is paused, and it provides a unique mechanism of long-term protection to a complex organism. In addition to diapause, we have characterized several killifish species with significant variations in their lifespans. Significantly long-lived killifish species also have protective mechanisms to slow the aging clock, providing a unique framework to understand regulators of natural longevity using comparative genomics. The compressed lifespan and high throughput nature of the turquoise killifish model make them ideal for functionally validating these regulators and facilitating rapid translation to aging. This project will use an evolutionary lens equipped with cutting-edge single-cell multi-omics and advanced experimental and statistical approaches to decode gene regulatory networks during diapause and natural longevity in multiple killifish species. We will first construct transcriptional regulatory networks at single-cell resolution in diapause to identify organ-specific regulators of diapause protection. Next, we will develop a novel paradigm to explore aging by learning from nature’s longevity experiments, which will allow us to decode how long-lived species maintain their health for a long time and identify the regulators of their longevity. Finally, we will develop novel approaches to translate these natural protective mechanisms to counter aging. Based on the unique biology of these extremophile vertebrates, this project will identify entirely new mechanisms that can prolong organ health during aging in vertebrates and pave the way for novel interventions that can potentially slow aging in humans.
项目概要/摘要 极端微生物——生活在极端环境中的生物——进化出独特的生存适应能力。 适应比理解渐进表型的调节更容易测量和表征。 极端表型可以揭示新的基因和策略,有可能带来显着的健康益处 对人类来说,非洲绿松石鳉鱼(Nothobranchiusfurzeri)是一种嗜极生物。 生活在每年有长达 8 个月完全干涸的短暂池塘中。它们已进化出两种。 为了在这个恶劣的栖息地生存,它们做出了非凡的适应:成虫的寿命被压缩为只有 4.5 个月, “假死”的形式,胚胎可以进入滞育状态并在泥中生存,直到下一次 滞育胚胎已经有了复杂的器官和组织,包括正在发育的肌肉。 大脑、心脏和许多复杂的细胞类型它们可以在滞育中存活长达 3 年(约长 5 倍)。 比其成年寿命)没有任何可察觉的对未来生活的权衡,因此,滞育是一种令人着迷的状态。 老化时钟暂停,它为复杂的系统提供了一种独特的长期保护机制 除了滞育之外,我们还对几种具有显着变异的鳉鱼物种进行了表征。 寿命非常长的鳉鱼物种也具有延缓衰老的保护机制。 时钟,提供了一个独特的框架来使用比较基因组学来了解自然长寿的调节因素。 绿松石鳉鱼模型的压缩寿命和高通量特性使其成为理想的选择 该项目将使用一个功能验证这些调节器并促进快速转化。 配备尖端单细胞多组学和先进实验和统计的进化镜头 解码多种鳉鱼滞育和自然寿命期间基因调控网络的方法 我们将首先在滞育期以单细胞分辨率构建转录调控网络。 接下来,我们将开发一种新的范式来探索。 通过从大自然的长寿实验中学习来衰老,这将使我们能够解码长寿物种的寿命 长期保持健康并确定其长寿的调节因素最后,我们将开发新的。 基于独特的生物学特性,将这些自然保护机制转化为抗衰老的方法。 对于这些嗜极脊椎动物,该项目将确定可以延长器官健康的全新机制 脊椎动物衰老过程中的研究,并为可能减缓人类衰老的新干预措施铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Param Priya Singh其他文献

Param Priya Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Deep learning for prediction of Mild Cognitive Impairment and Dementia of the Alzheimer's type
深度学习预测轻度认知障碍和阿尔茨海默氏症型痴呆
  • 批准号:
    10662094
  • 财政年份:
    2023
  • 资助金额:
    $ 139.51万
  • 项目类别:
Exercise adherence and cognitive decline: Engaging with the Black community to develop and test a goal-setting and exercise intensity intervention
运动坚持和认知能力下降:与黑人社区合作制定和测试目标设定和运动强度干预措施
  • 批准号:
    10767102
  • 财政年份:
    2023
  • 资助金额:
    $ 139.51万
  • 项目类别:
Measuring stress and epigenetic aging among Black older adults in community-based longitudinal studies of aging
在基于社区的衰老纵向研究中测量黑人老年人的压力和表观遗传衰老
  • 批准号:
    10653606
  • 财政年份:
    2023
  • 资助金额:
    $ 139.51万
  • 项目类别:
Investigators from Novices, a Transdisciplinary Research Education Program to Increase Diversity (INTREPID) in Aging Research
新手研究人员,一项旨在增加衰老研究多样性的跨学科研究教育计划 (INTREPID)
  • 批准号:
    10625709
  • 财政年份:
    2023
  • 资助金额:
    $ 139.51万
  • 项目类别:
Earlier-Life Predictors of Midlife Risk Factors for Dementia: A 35-Year Follow-up
中年痴呆症风险因素的早期预测因素:35 年随访
  • 批准号:
    10596295
  • 财政年份:
    2023
  • 资助金额:
    $ 139.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了