Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study

利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究

基本信息

  • 批准号:
    10687126
  • 负责人:
  • 金额:
    $ 41.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary Pulmonary embolism (PE) is a leading cause of death in the United States. Risk stratification for acute PE treatment can reduce mortality. Risk scoring systems use clinical and laboratory electronic medical record (EMR) data. In addition, biomarkers on computed tomography imaging can identify which patients with PE are at high risk of death, independent of clinical data. Despite advances in clinical and image-driven scoring systems, improving outcomes in acute PE depends on implementation of patient-specific EMR and imaging data analytic prognostic models at the point of care. The promise of digital medicine stems in part from the hope that by digitizing health data, we can leverage computer information systems to understand and improve care. A method that can make use of these data to predict patient-specific outcomes could not only provide major benefits for patient safety and healthcare quality but also reduce healthcare costs. Unfortunately, most of this information is not yet included in predictive statistical models that clinicians use to improve care delivery. This is because traditional computational methods and techniques are insufficient at accurately analyzing such high volumes of heterogeneous data. The goal of this proposal is to develop an automated precision medicine approach to achieve point-of-care risk stratification for PE patient outcomes using a fusion deep learning strategy that can simultaneously analyze health records and imaging data. An ideal PE risk-scoring system would not only predict mortality, but also assess the risk for the many debilitating long-term consequences of acute PE. Such a system would, therefore, facilitate optimal management and would likely require intelligent use of clinical, laboratory, and imaging data together in order to provide accurate patient -specific risk scoring for multiple PE outcome measures. In order to build a robust model, we propose to apply distributed training of deep learning models across four large US healthcare institutions. By distributing the algorithm rather than the data, we avoid sharing individually identifiable patient information. If successful, this project will be the first endeavor to leverage diagnostic imaging (pixel) data in combination with structured and unstructured EMR data to predict outcomes. We have the ideal research team, experience, and methods to develop an automated risk-scoring system for acute PE patients. Using a powerful combination of clinical, laboratory, and imaging data, this system will provide patient-specific risk scoring for multiple PE outcome measures. Further, this project will foster multi- center collaborations, which will afford us the opportunity to investigate the generalizability of our approach to different populations of PE patients and to train, test, and ultimately deploy our automated predictive model in a variety of clinical environments.
项目概要 肺栓塞(PE)是美国的一个主要原因。急性肺栓塞的危险分层 治疗可以降低死亡率。风险评分系统使用临床和实验室电子病历 (电子病历)数据。此外,计算机断层扫描成像的生物标志物可以识别哪些 PE 患者是 死亡风险很高,与临床数据无关。尽管临床和图像驱动评分取得了进步 系统,改善急性肺栓塞的结果取决于患者特异性 EMR 和成像的实施 护理点数据分析预后模型。 数字医学的前景部分源于希望通过数字化健康数据,我们可以利用 计算机信息系统来理解和改善护理。可以利用这些数据的方法 预测患者特定的结果不仅可以为患者安全和医疗质量带来重大好处 还可以降低医疗费用。不幸的是,大部分信息尚未包含在预测中 临床医生用来改善护理服务的统计模型。这是因为传统计算 方法和技术不足以准确分析如此大量的异构数据。 该提案的目标是开发一种自动化精准医疗方法,以实现护理点风险 使用可以同时分析的融合深度学习策略对 PE 患者结果进行分层 健康记录和影像数据。理想的 PE 风险评分系统不仅可以预测死亡率,还可以预测死亡率 评估急性肺栓塞造成许多使人衰弱的长期后果的风险。这样的系统将, 因此,促进最佳管理,可能需要明智地使用临床、实验室和 将成像数据结合在一起,以便为多种 PE 结果提供准确的患者特定风险评分 措施。为了构建鲁棒的模型,我们建议应用深度学习模型的分布式训练 横跨美国四家大型医疗机构。通过分发算法而不是数据,我们可以避免 共享可识别个人身份的患者信息。如果成功的话,这个项目将是第一个尝试 利用诊断成像(像素)数据与结构化和非结构化 EMR 数据相结合进行预测 结果。 我们拥有理想的研究团队、经验和方法来开发自动化风险评分系统 急性肺栓塞患者。该系统利用临床、实验室和成像数据的强大组合,将 为多种 PE 结果测量提供患者特定的风险评分。此外,该项目将促进多 中心合作,这将使我们有机会调查我们的方法的普遍性 不同人群的 PE 患者,并训练、测试并最终部署我们的自动化预测模型 各种临床环境。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Natural Language Processing Model for Identifying Critical Findings-A Multi-Institutional Study.
用于识别关键发现的自然语言处理模型 - 多机构研究。
  • DOI:
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Banerjee, Imon;Davis, Melissa A;Vey, Brianna L;Mazaheri, Sina;Khan, Fiza;Zavaletta, Vaz;Gerard, Roger;Gichoya, Judy Wawira;Patel, Bhavik
  • 通讯作者:
    Patel, Bhavik
Developing medical imaging AI for emerging infectious diseases.
开发针对新发传染病的医学成像人工智能。
  • DOI:
  • 发表时间:
    2022-11-18
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Huang, Shih;Chaudhari, Akshay S;Langlotz, Curtis P;Shah, Nigam;Yeung, Serena;Lungren, Matthew P
  • 通讯作者:
    Lungren, Matthew P
MedShift: Automated Identification of Shift Data for Medical Image Dataset Curation.
MedShift:自动识别医学图像数据集管理的移位数据。
  • DOI:
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guo, Xiaoyuan;Gichoya, Judy Wawira;Trivedi, Hari;Purkayastha, Saptarshi;Banerjee, Imon
  • 通讯作者:
    Banerjee, Imon
President Biden's Executive Order on Artificial Intelligence-Implications for Health Care Organizations.
拜登总统关于人工智能的行政命令——对医疗保健组织的影响。
  • DOI:
  • 发表时间:
    2024-01-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mello, Michelle M;Shah, Nigam H;Char, Danton S
  • 通讯作者:
    Char, Danton S
Efficient adversarial debiasing with concept activation vector - Medical image case-studies.
使用概念激活向量进行有效的对抗性去偏 - 医学图像案例研究。
  • DOI:
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Correa, Ramon;Pahwa, Khushbu;Patel, Bhavik;Vachon, Celine M;Gichoya, Judy W;Banerjee, Imon
  • 通讯作者:
    Banerjee, Imon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CURTIS P LANGLOTZ其他文献

CURTIS P LANGLOTZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CURTIS P LANGLOTZ', 18)}}的其他基金

Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
  • 批准号:
    10598324
  • 财政年份:
    2022
  • 资助金额:
    $ 41.44万
  • 项目类别:
Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
  • 批准号:
    10464905
  • 财政年份:
    2021
  • 资助金额:
    $ 41.44万
  • 项目类别:
Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
  • 批准号:
    10298306
  • 财政年份:
    2021
  • 资助金额:
    $ 41.44万
  • 项目类别:
Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
  • 批准号:
    10298306
  • 财政年份:
    2021
  • 资助金额:
    $ 41.44万
  • 项目类别:
ITERATIVE MODELING AND EVALUATION OF THE CLINICAL AND ECONOMIC OUTCOMES OF PAC
PAC 临床和经济结果的迭代建模和评估
  • 批准号:
    6300377
  • 财政年份:
    2000
  • 资助金额:
    $ 41.44万
  • 项目类别:
DEVELOPMENT OF A KNOWLEDGE-BASED IMAGE REPORTING SYSTEM
基于知识的图像报告系统的开发
  • 批准号:
    6073984
  • 财政年份:
    2000
  • 资助金额:
    $ 41.44万
  • 项目类别:
DEVELOPMENT OF A KNOWLEDGE-BASED IMAGE REPORTING SYSTEM
基于知识的图像报告系统的开发
  • 批准号:
    6484360
  • 财政年份:
    1999
  • 资助金额:
    $ 41.44万
  • 项目类别:
ITERATIVE MODELING AND EVALUATION OF THE CLINICAL AND ECONOMIC OUTCOMES OF PAC
PAC 临床和经济结果的迭代建模和评估
  • 批准号:
    6102654
  • 财政年份:
    1999
  • 资助金额:
    $ 41.44万
  • 项目类别:
DEVELOPMENT OF A KNOWLEDGE-BASED IMAGE REPORTING SYSTEM
基于知识的图像报告系统的开发
  • 批准号:
    6682889
  • 财政年份:
    1999
  • 资助金额:
    $ 41.44万
  • 项目类别:
ITERATIVE MODELING AND EVALUATION OF THE CLINICAL AND ECONOMIC OUTCOMES OF PAC
PAC 临床和经济结果的迭代建模和评估
  • 批准号:
    6269466
  • 财政年份:
    1998
  • 资助金额:
    $ 41.44万
  • 项目类别:

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
  • 批准号:
    62306090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高精度海表反照率遥感算法研究
  • 批准号:
    42376173
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
  • 批准号:
    82371878
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
  • 批准号:
    62371156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 41.44万
  • 项目类别:
Universal optical coherence polarimetry
通用光学相干偏振测定法
  • 批准号:
    10661749
  • 财政年份:
    2022
  • 资助金额:
    $ 41.44万
  • 项目类别:
Deep Learning Enabled Endovascular Stroke Therapy Screening in Community Hospitals
深度学习支持社区医院的血管内卒中治疗筛查
  • 批准号:
    10184809
  • 财政年份:
    2021
  • 资助金额:
    $ 41.44万
  • 项目类别:
Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
  • 批准号:
    10464905
  • 财政年份:
    2021
  • 资助金额:
    $ 41.44万
  • 项目类别:
Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
  • 批准号:
    10298306
  • 财政年份:
    2021
  • 资助金额:
    $ 41.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了