Molecular determinants of host-feeding manipulation and microbial colonization
宿主喂养操作和微生物定植的分子决定因素
基本信息
- 批准号:10686470
- 负责人:
- 金额:$ 133.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimalsAutomobile DrivingBacteriaBehaviorBehavioralBehavioral AssayCaenorhabditis elegansCommunicationConsumptionCoupledDataDecision MakingDevelopmentDietEnteralEnvironmentEukaryotaFeeding behaviorsGeneticGnotobioticHealthHumanHungerImaging DeviceIngestionInvertebratesMammalsMetabolismMicrobeMicrofluidicsModelingMolecularNatureNematodaNervous SystemNervous System PhysiologyNeurobiologyNutrientOdorsPatternPhysiologyPlantsProcessProxySensorySignal TransductionStructureSystemTechnologyTimeWorkfeedinggenetic manipulationgut bacteriagut colonizationgut microbesgut microbiomegut microbiotahost microbiotahost-microbe interactionsinsightmicrobialmicrobial colonizationmicrobial communitymicrobiomenovelpreferenceresponsescreeningtooltransmission process
项目摘要
Project Summary
All animals live in environments surrounded by microbes, yet the impact of bacteria on nervous
systems has been relatively under-studied. Recent data suggests that commensal gut bacteria may be capable
of modulating host behavior. Gut bacteria benefit from nutrients consumed by their host and because these
bacteria must be transmitted largely via diet, manipulation of host feeding behavior is a principal mode by
which resident microbes can influence the gut microbial community. Due to the dynamic nature of such an
interaction, studying feeding manipulation has been either challenging or impossible to date in most systems.
First, we must identify systems in which both host and microbe are amenable to genetic manipulation, and
which enable high-throughput behavioral screening in response to defined and naturalistic conditions. Here, we
propose to comprehensively study this phenomenon for the first time in any experimental system, using the
roundworm C. elegans — in combination with its natural associated bacteria — to gain mechanistic insights
into inter-organismal signals driving host-microbe interactions and decision making. C. elegans is a bacterial-
feeding nematode that is often found in rotting plant material and is commonly colonized by microbes. C.
elegans has some of the most extensive molecular, neurobiological and genetic tools of any multicellular
eukaryote, and, coupled with the ease of gnotobiotic culture in these worms, represents a highly attractive
system in which to study microbial influence on host behavior.
I have recently shown that in C. elegans, gut bacteria can influence chemosensory decisions — a proxy
for feeding behavior in certain contexts — resulting in increased preference for odors produced by these
enteric microbes. In parallel preliminary work, I have found that olfactory plasticity upon gut colonization by
diverse microbes correlates with gut colonization patterns in naturalistic settings. Together, these findings
suggest that the C. elegans native gut microbiota may be capable of impacting microbiome assembly by
influencing feeding behavior. In this proposal, we aim to establish C. elegans as a system to study feeding
manipulation by developing tools to identify the behavioral parameters which influence microbiome structure in
naturalistic settings. We propose to experimentally isolate ingestion from locomotory behavior through the
development of novel microfluidics imaging devices. We will develop new behavioral assays in 2- and 3-
dimensional arenas to present microbial communities mimicking the worms’ natural environment. We will then
identify the molecular basis of microbial-dependent changes in olfactory behaviors using naturalistic microbial
communities. Together, we propose to develop a new field of feeding manipulation by gut microbes, with C.
elegans centered as a preeminent model. We anticipate that the principles we identify in this proposal should
generalize to multiple systems and the neuroactive compounds we identify have the potential to impact
nervous system function in diverse hosts.
项目概要
所有动物都生活在被微生物包围的环境中,然而细菌对神经的影响
最近的数据表明,共生肠道细菌可能具有这种能力。
调节宿主行为的肠道细菌受益于宿主消耗的营养物质,因为这些
细菌必须主要通过饮食传播,操纵宿主摄食行为是主要方式
由于这种微生物的动态性质,哪些常驻微生物可以影响肠道微生物群落。
迄今为止,在大多数系统中,研究喂养操纵要么具有挑战性,要么不可能。
首先,我们必须确定宿主和微生物都适合基因操纵的系统,并且
在这里,我们能够根据定义的自然条件进行高通量行为筛选。
提议首次在任何实验系统中全面研究这种现象,使用
线虫线虫 - 与其天然相关细菌相结合 - 获得机制见解
转化为驱动宿主微生物相互作用和决策的生物体间信号。线虫是一种细菌。
经常在腐烂的植物材料中发现并且通常被微生物定殖的线虫 C.
线虫拥有所有多细胞动物中最广泛的分子、神经生物学和遗传工具
真核生物,再加上这些蠕虫中易于进行知生培养,代表了一种极具吸引力的
研究微生物对宿主行为影响的系统。
我最近证明,在线虫中,肠道细菌可以影响化学感应决策——一个代理
在某些情况下的进食行为 - 导致对这些产生的气味的偏好增加
在平行的初步工作中,我发现肠道微生物的嗅觉可塑性。
这些发现与自然环境中的肠道定植模式相关。
表明秀丽隐杆线虫天然肠道微生物群可能能够通过以下方式影响微生物组组装:
在这个影响摄食行为的提案中,我们的目标是建立秀丽隐杆线虫作为研究摄食的系统
通过开发工具来识别影响微生物组结构的行为参数来进行操作
我们建议通过实验将摄入与运动行为隔离。
新型微流体成像设备的开发我们将在 2- 和 3- 分析中开发新的行为分析。
然后我们将展示模仿蠕虫自然环境的微生物群落。
使用自然微生物识别微生物依赖性嗅觉行为变化的分子基础
我们建议共同开发肠道微生物喂养操纵的新领域,其中包括 C.
我们预计我们在该提案中确定的原则应该以线虫为中心。
推广到多个系统,我们发现的神经活性化合物有可能产生影响
不同宿主的神经系统功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Patrick ODonnell其他文献
Michael Patrick ODonnell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Patrick ODonnell', 18)}}的其他基金
Genetic and neural basis of pheromone sensory integration in nematodes
线虫信息素感觉统合的遗传和神经基础
- 批准号:
8792151 - 财政年份:2014
- 资助金额:
$ 133.88万 - 项目类别:
Genetic and neural basis of pheromone sensory integration in nematodes
线虫信息素感觉统合的遗传和神经基础
- 批准号:
8649158 - 财政年份:2014
- 资助金额:
$ 133.88万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Fosl2调控染色质开放性在哺乳动物卵丘-卵母细胞复合物成熟过程中的机制研究
- 批准号:82301863
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
H5亚型禽流感病毒PA蛋白诱导降解JAK1增强病毒对哺乳动物致病性的作用及机制研究
- 批准号:32373042
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
动物双歧杆菌对不同聚合度低聚木糖同化差异性的分子机制研究
- 批准号:32302789
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
相似海外基金
Post-translational regulation of aromatase in aging
衰老过程中芳香酶的翻译后调控
- 批准号:
10572625 - 财政年份:2023
- 资助金额:
$ 133.88万 - 项目类别:
A Digital Twin for Designing Bladder Treatment informed by Bladder Outlet Obstruction Mechanobiology (BOOM)
根据膀胱出口梗阻力学生物学 (BOOM) 设计膀胱治疗的数字孪生
- 批准号:
10659928 - 财政年份:2023
- 资助金额:
$ 133.88万 - 项目类别:
Modeling early SARS-CoV-2 pathogenesis in human lung organoids and slice cultures
在人肺类器官和切片培养物中模拟早期 SARS-CoV-2 发病机制
- 批准号:
10557881 - 财政年份:2022
- 资助金额:
$ 133.88万 - 项目类别:
Microvascular Stress as a Pathway to Neurodegeneration in Alzheimer's
微血管应激是阿尔茨海默氏症神经退行性病变的途径
- 批准号:
10555225 - 财政年份:2022
- 资助金额:
$ 133.88万 - 项目类别:
A novel role for developmental microglial-parvalbumin interneuron interactions in adult alcohol drinking behavior.
发育性小胶质细胞-小白蛋白中间神经元相互作用在成人饮酒行为中的新作用。
- 批准号:
10693892 - 财政年份:2022
- 资助金额:
$ 133.88万 - 项目类别: