Multi-objective representation learning methods for interpetable predictions of patient outcomesusing electronic health records

使用电子健康记录对患者结果进行可重复预测的多目标表示学习方法

基本信息

  • 批准号:
    10684907
  • 负责人:
  • 金额:
    $ 23.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract This project proposes new methods for representing data in electronic health records (EHR) to improve pre- dictive modeling and interpretation of patient outcomes. EHR data offer a promising opportunity for advancing the understanding of how clinical decisions and patient conditions interact over time to influence patient health. However, EHR data are difficult to use for predictive modeling due to the various data types they contain (con- tinuous, categorical, text, etc.), their longitudinal nature, the high amount of non-random missingness for certain measurements, and other concerns. Furthermore, patient outcomes often have heterogenous causes and re- quire information to be synthesized from several clinical lab measures and patient visits. The core challenge at hand is overcoming the mismatch between data representations in the EHR and the assumptions underly- ing commonly used statistical and machine learning (ML) methods. To this end, this project proposes novel wrapper-based methods for learning informative features from EHR data. Both methods propose specialized operators to handle sequential data, time delays, and variable interactions, and have the capacity to discover underlying clinical rules/decisions that affect patient outcomes. Importantly, both methods also produce archives of possible models that represent the best trade-offs between complexity and accuracy, which assists in model interpretation. These method advances are made possible by encoding a rich set of data operations as nodes in a directed acyclic graph, and optimizing the graph structures using multi-objective optimization. The central hypothesis of this research is that multi-objective optimization can learn effective data representations from the EHR to produce accurate, explanatory models of patient outcomes. Preliminary work has shown that these methods can effectively learn low-order data representations that improve the predictive ability of several state- of-the-art ML methods. This technique demonstrates good scaling properties with high-dimensional biomedical data. Aim 1 (K99) is to develop a multi-objective feature engineering method that pairs with existing ML methods to iteratively improve their performance by constructing new features from the raw data and using feedback from the trained model to guide feature construction. In Aim 2 (K99), this method is applied to form predictive models of the risk of heart disease and heart failure using longitudinal EHR data. The resultant models will be inter- preted with the help of mentors in order to translate predictions into clinical recommendations. For Aim 3 (R00), a second method is proposed that uses a similar framework to optimize existing neural network approaches in order to simplify their structure as much as possible while maintaining accuracy. The goal of Aim 4 (R00) is to identify hospital patients who are at risk of readmission and propose point-of-care strategies to mitigate that risk. This goal is facilitated through the application of the proposed methods to patient data collected from the Hospital of the University of Pennsylvania, the Geisinger Health System, and publicly available EHR databases.
项目概要/摘要 该项目提出了在电子健康记录(EHR)中表示数据的新方法,以改善预 EHR 数据的预测建模和解释为推进提供了一个充满希望的机会。 了解临床决策和患者状况如何随着时间的推移相互作用以影响患者的健康。 然而,由于 EHR 数据包含各种数据类型,因此很难用于预测建模(反之亦然)。 连续的、分类的、文本等),它们的纵向性质,某些特定的大量非随机缺失 此外,患者的结果往往有不同的原因和重新考虑。 获取从多种临床实验室测量和患者就诊中综合的信息是核心挑战。 目前的任务是克服电子病历中的数据表示与潜在假设之间的不匹配- 为此,该项目提出了新颖的统​​计和机器学习(ML)方法。 用于从 EHR 数据中学习信息特征的基于包装的方法这两种方法都提出了专门的方法。 操作员处理顺序数据、时间延迟和变量交互,并有能力发现 重要的是,这两种方法也会产生档案。 代表复杂性和准确性之间最佳权衡的可能模型,这有助于模型 这些方法的进步是通过将一组丰富的数据操作编码为节点而实现的。 在有向无环图中,并使用多目标优化来优化图结构。 这项研究的假设是多目标优化可以从中学习有效的数据表示 初步工作表明,电子病历能够产生准确的、解释性的患者结果模型。 方法可以有效地学习低阶数据表示,从而提高几种状态的预测能力 最先进的 ML 方法在高维生物医学方面展示了良好的缩放特性。 目标 1 (K99) 是开发一种与现有 ML 方法配对的多目标特征工程方法。 通过从原始数据构建新特征并使用反馈来迭代提高其性能 在目标 2 (K99) 中,应用该方法来形成预测模型。 使用纵向 EHR 数据评估心脏病和心力衰竭的风险。 在导师的帮助下进行预测,以便将预测转化为临床建议。 提出了第二种方法,使用类似的框架来优化现有的神经网络方法 为了在保持准确性的同时尽可能简化其结构。 Aim 4 (R00) 的目标是。 识别有再次入院风险的医院患者,并提出护理点策略以减轻这种风险 通过将所提出的方法应用于从患者收集的数据来促进这一目标。 宾夕法尼亚大学医院、Geisinger 健康系统和公开的 EHR 数据库。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pediatric ECG-Based Deep Learning to Predict Left Ventricular Dysfunction and Remodeling.
基于儿科心电图的深度学习来预测左心室功能障碍和重构。
  • DOI:
  • 发表时间:
    2024-03-19
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    Mayourian, Joshua;La Cava, William G;Vaid, Akhil;Nadkarni, Girish N;Ghelani, Sunil J;Mannix, Rebekah;Geva, Tal;Dionne, Audrey;Alexander, Mark E;Duong, Son Q;Triedman, John K
  • 通讯作者:
    Triedman, John K
Interpretation of machine learning predictions for patient outcomes in electronic health records.
机器学习对电子健康记录中患者结果的预测的解释。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cava, William La;Bauer, Christopher;Moore, Jason H;Pendergrass, Sarah A
  • 通讯作者:
    Pendergrass, Sarah A
Semantic variation operators for multidimensional genetic programming.
多维遗传规划的语义变异算子。
  • DOI:
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    La Cava, William;Moore, Jason H
  • 通讯作者:
    Moore, Jason H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William La Cava其他文献

William La Cava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William La Cava', 18)}}的其他基金

Multi-objective representation learning methods for interpetable predictions of patient outcomesusing electronic health records
使用电子健康记录对患者结果进行可重复预测的多目标表示学习方法
  • 批准号:
    10477327
  • 财政年份:
    2021
  • 资助金额:
    $ 23.66万
  • 项目类别:
Multi-objective representation learning methods for interpetable predictions of patient outcomesusing electronic health records
使用电子健康记录对患者结果进行可重复预测的多目标表示学习方法
  • 批准号:
    10453863
  • 财政年份:
    2021
  • 资助金额:
    $ 23.66万
  • 项目类别:

相似国自然基金

基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
  • 批准号:
    82304988
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
  • 批准号:
    82305416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
  • 批准号:
    82374307
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
  • 批准号:
    52371327
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
  • 批准号:
    72302155
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Quantifying the frequency and diversity of spliced HBV mRNAs in HIV-HBV co-infection and their role in modulating viral transcription and host immune responses
量化 HIV-HBV 合并感染中 HBV mRNA 剪接的频率和多样性及其在调节病毒转录和宿主免疫反应中的作用
  • 批准号:
    10761937
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
Leveraging Ethnic Anotia-microtia Disparities for Discovery (LEADD) Study
利用民族小耳症差异进行发现 (LEADD) 研究
  • 批准号:
    10715649
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
Multiplexed detection of cell-free M. Tuberculosis DNA and its drug-resistant variants in blood
血液中无细胞结核分枝杆菌 DNA 及其耐药变异体的多重检测
  • 批准号:
    10639855
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
Analytical Core
分析核心
  • 批准号:
    10730061
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
An Integrated Data Approach to Exploring Racial Differences in Reading Intervention Effectiveness
探索阅读干预效果中种族差异的综合数据方法
  • 批准号:
    10567796
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了