A novel framework for estimating personalized genomic variants of hypertension for precision medicine

用于估计高血压个性化基因组变异以实现精准医疗的新框架

基本信息

项目摘要

Project Summary/Abstract The candidate currently serves as an Assistant Professor of Engineering Management and Systems Engineering (EMSE) with a joint appointment in Biological Sciences at Missouri University of Science and Technology (Missouri S&T), a member institution of the University of Missouri (UM) System. Before joining Missouri S&T, the candidate obtained an MS degree in Biomedical Informatics (BMI) and completed a National Library of Medicine (NLM) Postdoctoral Fellowship in BMI at Department of Biomedical Informatics (DBMI) at University of Pittsburgh (Pitt). The candidate’s long-time research goal is to become an independent researcher with an extramurally supported research program concentrating on inferring the activation states of signaling pathways from multi-omics data and utilizing it in precision medicine for cardiovascular diseases. In this K01 application, the candidate has assembled a strong mentoring committee from both Pitt and UM System. The training, mentorship, and research opportunities provided by this K01 award will significantly strengthen her expertise in multi-omics analytics, causal inference, deep learning, and more importantly will help build her expertise in complex cardiovascular diseases and their risk factors. This K01 award is critical in transitioning the candidate into an independent investigator in multi-omics analytics for precision medicine in cardiovascular disease. In this proposal, the candidate proposes to pursue the following aims: develop and evaluate an instance-specific causal inference (ICI) framework to identify causative genomic variants for blood pressure regulation (Aim 1); harmonize a large mixed-ethnic cohort from The Trans-Omics for Precision Medicine program and apply ICI and GWAS to better understand the role of genomic variants in racial disparity in hypertension prevalence(Aim 2); apply and evaluate both population-based and instance-specific predictive machine learning models for hypertension prediction by integrating genomics and other omics data (Aim 3). If successful, this project will develop and evaluate a novel, instance-specific method for discovering individualized genomic variants of hypertension, for better understanding the genomic basis of racial differences in hypertension, and for more accurately and timely predicting the development of hypertension for intervention and prevention. Moreover, the developed methods will be applicable to other cardiovascular diseases and risk factor as well.
项目概要/摘要 该候选人目前担任工程管理学助理教授和 系统工程(EMSE)与密苏里州生物科学联合任命 科学技术大学(Missouri S&T),密苏里大学成员机构 加入密苏里科技大学之前,候选人获得了密苏里州 (UM) 系统的硕士学位。 生物医学信息学 (BMI) 并完成了国家医学图书馆 (NLM) 博士后 匹兹堡大学生物医学信息学系 (DBMI) BMI 研究员 (皮特)候选人的长期研究目标是成为一名独立研究员。 外部支持的研究计划,专注于推断激活状态 多组学数据的信号通路及其在心血管精准医学中的应用 在这个 K01 申请中,候选人组建了一个强大的指导委员会。 来自皮特和密歇根大学系统提供的培训、指导和研究机会。 该 K01 奖项将显着增强她在多组学分析、因果分析等方面的专业知识 推理、深度学习,更重要的是,将有助于培养她在复杂领域的专业知识 K01 奖项对于心血管疾病及其危险因素的转变至关重要。 精准医学多组学分析独立研究员候选人 在此提案中,候选人建议追求以下目标: 开发和评估特定于实例的因果推理 (ICI) 框架来识别因果关系 血压调节的基因组变异(目标 1);协调大型混合种族群体 来自 Trans-Omics for Precision Medicine 计划,并应用 ICI 和 GWAS 来更好地 了解基因组变异在高血压患病率种族差异中的作用(目标 2); 应用和评估基于人群和特定实例的预测机器学习 通过整合基因组学和其他组学数据来预测高血压的模型(目标 3)。 成功后,该项目将开发和评估一种新颖的、针对特定实例的方法 发现高血压的个体化基因组变异,以便更好地了解 高血压种族差异的基因组基础,以便更准确和及时 预测高血压的发展以进行干预和预防。 开发的方法也适用于其他心血管疾病和危险因素。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A genome-wide association study coupled with machine learning approaches to identify influential demographic and genomic factors underlying Parkinson's disease.
全基因组关联研究与机器学习方法相结合,以确定帕金森病背后有影响力的人口和基因组因素。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rahman MA;Liu J
  • 通讯作者:
    Liu J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinling Liu其他文献

The role of effectors and host immunity in plant-necrotrophic fungal interactions
效应子和宿主免疫在植物-坏死性真菌相互作用中的作用
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Xuli Wang;Nan Jiang;Jinling Liu;Wende Liu;Guoliang Wang
  • 通讯作者:
    Guoliang Wang

Jinling Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jinling Liu', 18)}}的其他基金

Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
  • 批准号:
    10658217
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
A novel framework for estimating personalized genomic variants of hypertension for precision medicine
用于估计高血压个性化基因组变异以实现精准医疗的新框架
  • 批准号:
    10525380
  • 财政年份:
    2022
  • 资助金额:
    $ 14.42万
  • 项目类别:

相似海外基金

Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
  • 批准号:
    10748859
  • 财政年份:
    2024
  • 资助金额:
    $ 14.42万
  • 项目类别:
Core E: Biosample Core
核心 E:生物样本核心
  • 批准号:
    10555694
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
  • 批准号:
    10639360
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
Pathogenic T cells in discoid lupus erythematosus
盘状红斑狼疮中的致病性 T 细胞
  • 批准号:
    10664134
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
MARC at University of California, San Diego
加州大学圣地亚哥分校 MARC
  • 批准号:
    10630028
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了