Multi-modal, large-scale characterization of cellular and cell-type-specific effects with electric stimulation in rodent and human brain
对啮齿动物和人脑中电刺激的细胞和细胞类型特异性效应进行多模式、大规模表征
基本信息
- 批准号:10684766
- 负责人:
- 金额:$ 54.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAffectAreaBiophysical ProcessBrainCellsClassificationCollaborationsCouplingDataDementiaDistantElectric StimulationElectrical Stimulation of the BrainElectrodesElectrophysiology (science)EpilepsyExhibitsFrequenciesGene Expression ProfileGoalsHeadHippocampusHospitalsHumanIn VitroInterventionInvestigationKnowledgeLocationMapsMeasuresMedialMonitorMorphologyMusNeocortexNeuronsOutcomeParkinson DiseasePathologicPatternPhasePhysiologicalPropertyProtocols documentationResearchRodentSiteSliceSpecificityStimulusSystemTechniquesTechnologyTemporal LobeTestingTherapeuticTherapeutic InterventionTransgenic OrganismsWorkawakebrain tissuecell typedensitydesignextracellularimprovedin vitro activityin vivoinsightmultimodal datamultimodalityneocorticalnervous system disorderneural circuitneuronal circuitrynovelpatch clamppreferenceresponsesingle-cell RNA sequencingspatiotemporaltool
项目摘要
Project Abstract
The application of electric stimulation (ES) to the brain has been widely used to perturb the physiological and
pathological dynamics of neuronal circuits, with established applications including therapeutic interventions for
neurological disorders such as epilepsy, dementia, and Parkinson’s disease. However, the biophysical
mechanisms underlying ES in the brain remain unclear. There is still a lack of understanding about where, when,
and how to apply ES to brain circuits in vivo. Moreover, ES protocols applied to the brain do so without
consideration for the remarkable diversity of cell types comprising neural circuits. These factors have led to
conflicting outcomes regarding the efficacy of ES interventions for neurological disease and for modulating high-
level brain processing. Our primary goal is to offer mechanistic understanding of ES at the single-neuron and
cell-type specific level to enhance the selectivity, specificity and efficacy of ES application. To do so, we will
explore the selective and controlled entrainment of different cell types in isolation and in intact circuits by
combining in vitro (multipatch) electrophysiology in rodent and human brain slices (Aim 1), with large-scale, high-
density Neuropixels in vivo recordings in rodents (Aim 2). Notably, at the Institute we have established mature
workflows measuring in vitro activity in rodent and human brain slices (i.e. we receive live human brain tissue
from approximately 50 cases per year from nearby hospitals) as well as large-scale brain observatories using
multiple Neuropixels simultaneously in various cortical areas. Using these tools we propose to conduct a detailed
examination into the subthreshold and spike-timing entrainment of neurons to ES in a spectrum of rigorously-
identified neuronal cell classes, defined by their electrophysiological, morphological, and transcriptional profiles,
in both rodent and human cortical slices. We will investigate how the modulation of different extracellular stimulus
parameters such as amplitude, frequency and phase alter cellular subthreshold responses and spike-phase
locking activity. Our extensive preliminary data clearly indicates that defined excitatory and inhibitory classes
exhibit strong entrainment preferences to particular ES parameter regimes potentially offering a way for cell type-
specific ES protocols. We will utilize these results to guide the design and delivery of new, optimized ES protocols
tailored to modulate specific neuronal circuits with increase precision and fidelity (Aim 3). Our study will generate
an unprecedented multi-modal data set providing a detailed view of the effect of ES at multiple spatiotemporal
scales with high cell-type specificity. The different modes support each other and are geared toward generating
more selective and robust ES protocols.
项目摘要
电刺激(ES)对大脑的应用已被广泛用于扰乱生理和
神经回路的病理动力学,已建立的应用包括治疗干预
然而,神经系统疾病,如癫痫、痴呆和帕金森病。
大脑中 ES 的机制仍不清楚。对于何时、何地,仍缺乏了解。
以及如何将 ES 应用于体内脑回路此外,应用于大脑的 ES 协议不需要这样做。
考虑到组成神经回路的细胞类型的显着多样性。
ES 干预措施对神经系统疾病和调节高神经系统疾病的功效存在相互矛盾的结果
我们的主要目标是在单神经元和水平上提供对 ES 的机械理解。
细胞类型特异性水平以增强ES应用的选择性、特异性和功效。
探索隔离和完整电路中不同细胞类型的选择性和受控夹带
将啮齿动物和人脑切片的体外(多片)电生理学(目标 1)与大规模、高
啮齿类动物的密度神经像素体内记录(目标2)值得注意的是,我们在研究所已经建立了成熟的神经像素记录。
测量啮齿动物和人脑切片的体外活动的工作流程(即我们收到活的人脑组织
来自附近医院每年约 50 个病例)以及使用大型脑观测站
我们建议使用这些工具在各个皮质区域同时进行多个神经像素。
检查神经元到 ES 的阈下和尖峰时间夹带,在一系列严格的范围内
确定了神经元细胞类别,由其电生理学、形态学和转录特征定义,
我们将研究如何在啮齿动物和人类皮质切片中调节不同的细胞外刺激。
振幅、频率和相位等参数改变细胞阈下响应和尖峰相位
我们广泛的初步数据清楚地表明了所定义的兴奋性和抑制性类别。
对特定 ES 参数方案表现出强烈的夹带偏好,可能为细胞类型提供一种方法
我们将利用这些结果来指导新的、优化的 ES 协议的设计和交付。
旨在以更高的精度和保真度调节特定的神经回路(目标 3)。
前所未有的多模态数据集,提供 ES 在多个时空影响的详细视图
不同的模式相互支持并旨在生成具有高细胞类型特异性的尺度。
更具选择性和鲁棒性的 ES 协议。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-modal characterization and simulation of human epileptic circuitry.
人类癫痫电路的多模态表征和模拟。
- DOI:
- 发表时间:2022-12-27
- 期刊:
- 影响因子:8.8
- 作者:Buchin, Anatoly;de Frates, Rebecca;Nandi, Anirban;Mann, Rusty;Chong, Peter;Ng, Lindsay;Miller, Jeremy;Hodge, Rebecca;Kalmbach, Brian;Bose, Soumita;Rutishauser, Ueli;McConoughey, Stephen;Lein, Ed;Berg, Jim;Sorensen, Staci;Gwinn, Ryder;Koch
- 通讯作者:Koch
Associations between in vitro , in vivo and in silico cell classes in mouse primary visual cortex.
小鼠初级视觉皮层的体外、体内和计算机细胞类别之间的关联。
- DOI:
- 发表时间:2023-04-18
- 期刊:
- 影响因子:0
- 作者:Wei, Yina;Nandi, Anirban;Jia, Xiaoxuan;Siegle, Joshua H;Denman, Daniel;Lee, Soo Yeun;Buchin, Anatoly;Geit, Werner Van;Mosher, Clayton P;Olsen, Shawn;Anastassiou, Costas A
- 通讯作者:Anastassiou, Costas A
Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types.
连接皮层细胞类型的电生理学、形态学和转录组学的单神经元模型。
- DOI:
- 发表时间:2022-11-08
- 期刊:
- 影响因子:8.8
- 作者:Nandi, Anirban;Chartrand, Thomas;Van Geit, Werner;Buchin, Anatoly;Yao, Zizhen;Lee, Soo Yeun;Wei, Yina;Kalmbach, Brian;Lee, Brian;Lein, Ed;Berg, Jim;Sümbül, Uygar;Koch, Christof;Tasic, Bosiljka;Anastassiou, Costas A
- 通讯作者:Anastassiou, Costas A
Author Correction: Human neocortical expansion involves glutamatergic neuron diversification.
作者更正:人类新皮质扩张涉及谷氨酸能神经元多样化。
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:64.8
- 作者:Berg, Jim;Sorensen, Staci A;Ting, Jonathan T;Miller, Jeremy A;Chartrand, Thomas;Buchin, Anatoly;Bakken, Trygve E;Budzillo, Agata;Dee, Nick;Ding, Song;Gouwens, Nathan W;Hodge, Rebecca D;Kalmbach, Brian;Lee, Changkyu;Lee, Brian R;Alfiler
- 通讯作者:Alfiler
Cell class-specific electric field entrainment of neural activity.
细胞类特异性电场夹带神经活动。
- DOI:
- 发表时间:2024-03-06
- 期刊:
- 影响因子:0
- 作者:Lee, Soo Yeun;Kozalakis, Konstantinos;Baftizadeh, Fahimeh;Campagnola, Luke;Jarsky, Tim;Koch, Christof;Anastassiou, Costas A
- 通讯作者:Anastassiou, Costas A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soo Yeun Lee其他文献
Soo Yeun Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soo Yeun Lee', 18)}}的其他基金
Multi-modal, large-scale characterization of cellular and cell-type-specific effects with electric stimulation in rodent and human brain
对啮齿动物和人脑中电刺激的细胞和细胞类型特异性效应进行多模式、大规模表征
- 批准号:
10469591 - 财政年份:2020
- 资助金额:
$ 54.91万 - 项目类别:
Multi-modal, large-scale characterization of cellular and cell-type-specific effects with electric stimulation in rodent and human brain
对啮齿动物和人脑中电刺激的细胞和细胞类型特异性效应进行多模式、大规模表征
- 批准号:
10266176 - 财政年份:2020
- 资助金额:
$ 54.91万 - 项目类别:
相似国自然基金
京津冀水供给服务空间流动及其生态阈值对跨区域国土空间的影响与优化
- 批准号:42301344
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
区域医疗一体化对基层医疗机构合理用药的影响及优化策略——基于创新扩散理论
- 批准号:72304011
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
农产品出口区域化管理对企业和农户的行为决策及经济绩效影响研究
- 批准号:72373067
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
转录因子ISL1基因启动子区域突变影响基因转录调控及其对室间隔缺损发生的作用机制研究
- 批准号:82300340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
- 批准号:
10699137 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Inflammatory Bowel Disease-Induced Inflammation Potentiates Atrial Fibrillation Risk
炎症性肠病引起的炎症会增加心房颤动的风险
- 批准号:
10606410 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Investigating Astrocytic Glutamate and Potassium Dynamics in the Healthy and Injured Brain
研究健康和受伤大脑中星形胶质细胞谷氨酸和钾的动态
- 批准号:
10754425 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Cellular Basis for Autonomic Regulation of Cardiac Arrhythmias
心律失常自主调节的细胞基础
- 批准号:
10627578 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别: