Exploiting alpha-ketoglutarate-dependent metabolism for therapeutic benefit in acute myeloid leukemia
利用α-酮戊二酸依赖性代谢来治疗急性髓系白血病
基本信息
- 批准号:10684842
- 负责人:
- 金额:$ 20.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-17 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaBiochemistryBiologicalBone MarrowCRISPR/Cas technologyCell LineCellsCharacteristicsChromatinChromosome abnormalityCitric Acid CycleClinicalComplexDNA MethylationDataDevelopment PlansDioxygenasesDiseaseDrug TargetingEnvironmentEnzyme InhibitionEnzymesEpigenetic ProcessFaceFamilyFundingGene ExpressionGeneticGenetic ModelsGenetic TranscriptionGenotypeGoalsHematologic NeoplasmsHumanIn VitroInternationalInvestigationIsocitrate DehydrogenaseKaryotypeKetoglutarate Dehydrogenase ComplexLeukemic CellMaintenanceMalignant NeoplasmsMediatingMedical OncologyMemorial Sloan-Kettering Cancer CenterMentorsMentorshipMetabolicMetabolismModelingMolecularMolecular BiologyMusMutationMyelogenousOncogenesOncogenicPatientsPhenotypePhysiciansPositioning AttributePre-Clinical ModelPrognosisProliferatingReagentRefractoryResearchResearch PersonnelResourcesRoleSamplingScientistServicesSolid NeoplasmSpecificitySystemTP53 geneTP53-mutant acute myeloid leukemiaTestingTherapeuticTrainingTreatment FailureTumor SuppressionTumor Suppressor ProteinsUp-RegulationWorkacute myeloid leukemia celladverse outcomealpha ketoglutaratecancer geneticscareercareer developmentchemotherapyclinical practiceclinical trainingcytotoxicitydrug discoveryeffective therapyfunctional genomicsgenetic approachgenetic technologyhistone methylationhuman diseaseimproved outcomein vivoinhibitorinstructorleukemialeukemia treatmentmimicrymouse modelmutantnew therapeutic targetnovel strategiesnovel therapeutic interventionpatient derived xenograft modelprecursor cellprogramsskillssuccinyl-coenzyme Atooltumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Therapeutic modulation of dysregulated metabolism has emerged as a successful therapeutic strategy for acute
myeloid leukemia (AML) harboring oncogenic isocitrate dehydrogenase (IDH) mutations. Inhibition of IDH results
in terminal myeloid differentiation of leukemic blasts and led to FDA-approval of IDH1 and IDH2 inhibitors in
AML. However, there are currently no metabolism-directed therapies for IDH wild-type AML, which represents
the majority of AML patients. Preliminary data presented in this proposal describe the identification of 2-
oxoglutarate dehydrogenase (OGDH), a tricarboxylic acid (TCA) cycle enzyme which catalyzes the conversion
of alpha-ketoglutarate (aKG) to succinyl CoA, as a previously unknown metabolic vulnerability in AML. Inhibition
of this enzyme is sufficient to upregulate cellular aKG and drive myeloid differentiation in AML cells lacking IDH
mutations. Currently however, the molecular mechanisms facilitating the change in cell fate with OGDH inhibition
remain unknown, as do the genotypic contexts where exploiting aKG-dependent metabolism is most efficacious.
The studies proposed seek to rigorously test the hypotheses that, 1) the treatment-refractory TP53-
mutant/complex karyotype (CK) AML subset may be particularly sensitive to aKG perturbation, and 2) that the
TET family of aKG-dependent dioxygenases which convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine
(5hmC) and impact gene expression, among other chromatin modifying enzymes, serve as effectors of aKG-
dependent differentiation. The research plan will utilize in vitro systems to characterize the aKG-dependent
epigenetic program, in vivo mouse models to examine OGDH as a putative target in TP53-mutant/CK AML, and
patient samples/patient-derived xenografts to determine if aberrant aKG-dependent metabolism sustains human
leukemia. The proposed investigations will expand our biological understanding of metabolite use in leukemia
and advance a differentiation-based strategy to treat chemotherapy-refractory leukemias that lack conventionally
targetable oncogenes. The applicant, Dr. Scott Millman, an Instructor on the Leukemia Service at the Memorial
Sloan Kettering Cancer Center (MSKCC), has devised a 5-year career development plan that builds upon his
background in molecular biology and biochemistry, and his clinical training in medical oncology. Dr. Millman will
conduct the proposed research under the mentorship of Dr. Scott Lowe, an internationally renowned expert in
cancer genetics with a proven track record of training successful independent investigators, to develop new skills
in functional genomics and leukemia modeling that are essential for his career goal of developing new therapeutic
approaches for hematologic malignancies. This mentorship, combined with the ideal training environment
provided at MSKCC, will allow Dr. Millman to carry out the proposed research program and transition to an R01-
funded independent, physician-scientist position in an academic setting.
项目概要/摘要
代谢失调的治疗性调节已成为急性发作的成功治疗策略
含有致癌异柠檬酸脱氢酶 (IDH) 突变的骨髓性白血病 (AML)。 IDH结果的抑制
白血病母细胞的终末骨髓分化,并导致 FDA 批准 IDH1 和 IDH2 抑制剂
反洗钱。然而,目前还没有针对 IDH 野生型 AML 的代谢导向疗法,这代表
大多数 AML 患者。本提案中提供的初步数据描述了 2-
氧化戊二酸脱氢酶 (OGDH),一种催化转化的三羧酸 (TCA) 循环酶
α-酮戊二酸 (aKG) 转化为琥珀酰辅酶 A,这是 AML 中以前未知的代谢脆弱性。抑制
这种酶的作用足以上调细胞 aKG 并驱动缺乏 IDH 的 AML 细胞的骨髓分化
突变。然而目前,通过抑制 OGDH 促进细胞命运改变的分子机制
仍然未知,利用 aKG 依赖性代谢最有效的基因型背景也是如此。
拟议的研究旨在严格检验以下假设:1) 治疗难治性 TP53-
突变/复杂核型 (CK) AML 子集可能对 aKG 扰动特别敏感,并且 2)
TET 家族的 aKG 依赖性双加氧酶,可将 5-甲基胞嘧啶 (5mC) 转化为 5-羟甲基胞嘧啶
(5hmC) 和影响基因表达以及其他染色质修饰酶,充当 aKG- 的效应子
依赖分化。该研究计划将利用体外系统来表征 aKG 依赖性
表观遗传程序,体内小鼠模型,以检查 OGDH 作为 TP53 突变/CK AML 的推定靶标,以及
患者样本/患者来源的异种移植物以确定异常的 aKG 依赖性代谢是否维持人类
白血病。拟议的研究将扩大我们对白血病代谢物用途的生物学理解
并提出基于分化的策略来治疗传统疗法缺乏的化疗难治性白血病
可靶向癌基因。申请人斯科特·米尔曼博士,纪念馆白血病服务讲师
斯隆凯特琳癌症中心 (MSKCC) 制定了一项 5 年职业发展计划
分子生物学和生物化学背景,以及肿瘤内科临床培训。米尔曼博士将
在国际知名专家 Scott Lowe 博士的指导下进行拟议的研究
癌症遗传学在培训成功的独立研究人员以开发新技能方面拥有良好的记录
在功能基因组学和白血病建模领域,这对于他开发新疗法的职业目标至关重要
血液系统恶性肿瘤的治疗方法。这种指导,结合理想的培训环境
由 MSKCC 提供,将使 Millman 博士能够执行拟议的研究计划并过渡到 R01-
在学术环境中资助独立的医师科学家职位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Evan Millman其他文献
Scott Evan Millman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Evan Millman', 18)}}的其他基金
Exploiting alpha-ketoglutarate-dependent metabolism for therapeutic benefit in acute myeloid leukemia
利用α-酮戊二酸依赖性代谢来治疗急性髓系白血病
- 批准号:
10523632 - 财政年份:2022
- 资助金额:
$ 20.61万 - 项目类别:
Exploiting alpha-ketoglutarate-dependent metabolism for therapeutic benefit in acute myeloid leukemia
利用α-酮戊二酸依赖性代谢来治疗急性髓系白血病
- 批准号:
10523632 - 财政年份:2022
- 资助金额:
$ 20.61万 - 项目类别:
相似国自然基金
基于生物化学与稳定同位素的达里湖水内外源补排机制及演化历史重构
- 批准号:52369014
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
施氮与混交对降香黄檀—沉香树植物−土壤−微生物化学计量的影响
- 批准号:32360366
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
独特二聚天然产物Phomoxanthone A 生物合成关键酶学机制研究及衍生物化学酶法构建
- 批准号:32370056
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
富边缘平行排列石墨烯/陶瓷基复合材料的构建及生物化学传感性能
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
真菌漆酶驱动根际腐殖化减低粪肥源雌激素作物吸收的生物化学机理
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Biology of terminal R-loops in splicing factor mutant cancers
剪接因子突变癌症中末端 R 环的生物学
- 批准号:
10652900 - 财政年份:2023
- 资助金额:
$ 20.61万 - 项目类别:
Exploiting alpha-ketoglutarate-dependent metabolism for therapeutic benefit in acute myeloid leukemia
利用α-酮戊二酸依赖性代谢来治疗急性髓系白血病
- 批准号:
10523632 - 财政年份:2022
- 资助金额:
$ 20.61万 - 项目类别:
The non-catalytic function of PARP2 in DNA repair and cancer therapy
PARP2在DNA修复和癌症治疗中的非催化功能
- 批准号:
10641934 - 财政年份:2022
- 资助金额:
$ 20.61万 - 项目类别:
Exploiting alpha-ketoglutarate-dependent metabolism for therapeutic benefit in acute myeloid leukemia
利用α-酮戊二酸依赖性代谢来治疗急性髓系白血病
- 批准号:
10523632 - 财政年份:2022
- 资助金额:
$ 20.61万 - 项目类别:
The non-catalytic function of PARP2 in DNA repair and cancer therapy
PARP2在DNA修复和癌症治疗中的非催化功能
- 批准号:
10540084 - 财政年份:2022
- 资助金额:
$ 20.61万 - 项目类别: