Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
基本信息
- 批准号:10683710
- 负责人:
- 金额:$ 3.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2025-02-14
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAblationActinsAdherens JunctionAdhesivesArchitectureAtherosclerosisBarberingBindingBiomimeticsBiosensorBlocking AntibodiesBloodBlood CirculationBlood Plasma VolumeBlood VesselsBlood flowC-terminalCardiovascular DiseasesCell Adhesion MoleculesCell LineCell membraneCell-Cell AdhesionCellsChronicClathrinClinicalClustered Regularly Interspaced Short Palindromic RepeatsCommunicationComplexCouplingCytoskeletonDataDiseaseEdemaEducational process of instructingEndothelial CellsEndotheliumEquilibriumFamilyFrictionGenetic TranscriptionGoalsHomeostasisHumanHuman DevelopmentInflammatoryInterventionIschemiaKnowledgeLeadLigandsLinkLiquid substanceMeasuresMechanicsMediatingMentorsModelingMolecularMorphogenesisMyocardial InfarctionNatural regenerationNeurodegenerative DisordersNutrientPathogenesisPathologicPathway interactionsPermeabilityPhosphorylationPolymersProcessProteinsProteomicsReceptor ActivationRegulationResearchResistanceRoleSignal TransductionStrokeTestingTissue ModelTissuesTrainingTransducersVascular Cell Adhesion Molecule-1Vascular DiseasesVascular EndotheliumVascular PermeabilitiesWorkbeta catenincadherin 5careercareer developmentendothelial dysfunctionexperiencehemodynamicshuman modelimprovedinhibitorinsightlive cell microscopymechanical forcemutantnew therapeutic targetnotch proteinnovelpolymerizationpreventreceptorrepairedresponsesensorshear stressspatiotemporalsuperresolution microscopyultra high resolution
项目摘要
PROJECT SUMMARY/ABSTRACT
Precise and dynamic regulation of vascular barrier function, the ability of endothelial cells that line blood vessels
to provide a selectively permeable barrier between the bloodstream and surrounding tissue, is universally
important for maintaining tissue homeostasis. The pathological consequences of dysregulated barrier are evident
in various cardiovascular diseases like atherosclerosis and chronic ischemia as well as inflammatory and
neurodegenerative diseases. In homeostatic conditions, hemodynamic shear stress, the frictional drag force
exerted by the flow of blood on endothelial cells, promotes vascular homeostasis and barrier function through
remodeling and enhancement of cell-cell adherens junctions (AJs) and intrinsic actin cytoskeletal dynamics. The
critical cell-cell adhesion molecule vascular endothelial (VE-) cadherin, the principle component of AJs, regulates
junctional stability through its turnover and internalization and experiences significant changes in tension under
shear stress. Additionally, the actin cytoskeleton regulates vascular barrier by maintaining a balance between
dynamic pushing forces to maintain VE-cadherin and tensile forces which stabilize intracellular AJ complexes.
However, the specific molecular sensors and transducers that link hemodynamic shear stress to the mechanical
regulation of AJs and vascular barrier function remain poorly understood. Activation of the ubiquitously important
Notch1 receptor was recently been found to modulate vascular barrier function in response to shear stress by
complexing with VE-cadherin and stabilizing AJs. While previous work has determined how this Notch1 cortical
pathway modulates vascular barrier function, it remains unclear how shear stress activates the Notch1 receptor.
Building on preliminary data linking Notch1 to intrinsic cellular adhesive and cytoskeletal machinery, this proposal
tests the hypothesis that intrinsic coupling of Notch1 to VE-cadherin and the cortical actin cytoskeleton regulates
shear stress-mediated Notch1 activation. Interrogation of Notch1 activation in response to shear stress will be
approached by completing two specific aims: (1) determine how VE-cadherin spatiotemporally regulates
Notch1 and its ligand Dll4 to coordinate activation by shear stress and (2) identify the mechanical
interplay between Notch1 and intrinsic actin cytoskeletal dynamics under shear stress. Throughout the
course of the proposed research, I will gain training in 3D biomimetic models of the human microvasculature,
super-resolution live cell microscopy, and mechanistic molecular approaches, while simultaneously enhancing
career development through training in scientific communication, mentoring, and teaching. I have assembled an
exceptional, complementary mentoring team to help me achieve my research and career goals: Dr. Matthew
Kutys, an expert in organotypic tissue modeling and cell mechanics will be my primary sponsor and Dr. Diane
Barber, a leader in cellular cytoskeletal dynamics, will be my co-sponsor. Ultimately, these findings will identify
new mechanisms by which Notch1 is activated in response to shear stress and potentially identify new
therapeutic targets for modulating barrier function and other vasculopathies where Notch1 is implicated.
项目概要/摘要
精确动态调节血管屏障功能、血管内皮细胞的能力
在血流和周围组织之间提供选择性渗透屏障,是普遍的做法
对于维持组织稳态很重要。屏障失调的病理后果是显而易见的
各种心血管疾病,如动脉粥样硬化、慢性缺血以及炎症和
神经退行性疾病。在稳态条件下,血流动力学剪切应力、摩擦阻力
血流对内皮细胞产生作用,通过促进血管稳态和屏障功能
细胞-细胞粘附连接(AJ)的重塑和增强以及内在肌动蛋白细胞骨架动力学。这
关键的细胞间粘附分子血管内皮 (VE-) 钙粘蛋白是 AJ 的主要成分,可调节
通过其周转和内化实现连接稳定性,并在压力下经历显着变化
剪切应力。此外,肌动蛋白细胞骨架通过维持之间的平衡来调节血管屏障。
维持 VE-钙粘蛋白的动态推力和稳定细胞内 AJ 复合物的张力。
然而,将血流动力学剪切应力与机械应力联系起来的特定分子传感器和换能器
AJ 和血管屏障功能的调节仍知之甚少。激活无处不在的重要
最近发现 Notch1 受体可以通过以下方式调节血管屏障功能以响应剪切应力
与 VE-钙粘蛋白复合并稳定 AJ。虽然之前的工作已经确定了 Notch1 皮质如何
虽然剪切力如何调节血管屏障功能,但剪切应力如何激活 Notch1 受体仍不清楚。
该提案基于将 Notch1 与内在细胞粘附和细胞骨架机制联系起来的初步数据
检验 Notch1 与 VE-钙粘蛋白和皮质肌动蛋白细胞骨架的内在耦合调节的假设
剪切应力介导的 Notch1 激活。响应剪切应力的 Notch1 激活的询问将是
通过完成两个具体目标来实现:(1)确定 VE-钙粘蛋白如何时空调节
Notch1 及其配体 Dll4 通过剪切应力协调激活,并 (2) 识别机械
剪切应力下 Notch1 和内在肌动蛋白细胞骨架动力学之间的相互作用。整个
在拟议的研究过程中,我将获得人体微脉管系统 3D 仿生模型的培训,
超分辨率活细胞显微镜和机械分子方法,同时增强
通过科学传播、指导和教学培训进行职业发展。我已经组装了一个
卓越、互补的指导团队帮助我实现我的研究和职业目标:Matthew 博士
Kutys 是器官组织建模和细胞力学方面的专家,他将是我的主要赞助商,Diane 博士将是我的主要赞助商
巴伯是细胞骨架动力学领域的领军人物,他将成为我的共同发起人。最终,这些发现将确定
Notch1 响应剪切应力而被激活的新机制,并可能识别新的
调节屏障功能和其他涉及 Notch1 的血管疾病的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tania Singh其他文献
Tania Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tania Singh', 18)}}的其他基金
Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
- 批准号:
10389629 - 财政年份:2022
- 资助金额:
$ 3.94万 - 项目类别:
相似国自然基金
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
- 批准号:82303710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于荷顺铂温敏纳米凝胶载KU135介入栓塞联合射频消融治疗肝癌的实验研究
- 批准号:82302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Spatiotemporal control of tendon healing through modular, injectable hydrogel composites
通过模块化、可注射水凝胶复合材料对肌腱愈合的时空控制
- 批准号:
10605456 - 财政年份:2023
- 资助金额:
$ 3.94万 - 项目类别:
Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
- 批准号:
10389629 - 财政年份:2022
- 资助金额:
$ 3.94万 - 项目类别:
Creeping fat and Crohn's disease associated strictures
蠕动脂肪和克罗恩病相关的狭窄
- 批准号:
10641679 - 财政年份:2020
- 资助金额:
$ 3.94万 - 项目类别:
An investigation of the roles of mechanical signaling in YAP-mediated tooth renew
机械信号在 YAP 介导的牙齿更新中作用的研究
- 批准号:
9904599 - 财政年份:2019
- 资助金额:
$ 3.94万 - 项目类别:
Epidermal polarization: the desmosomal cadherin desmoglein 1 regulates tissue mechanics and barrier function
表皮极化:桥粒钙粘蛋白桥粒糖蛋白 1 调节组织力学和屏障功能
- 批准号:
9904494 - 财政年份:2019
- 资助金额:
$ 3.94万 - 项目类别: